Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-24T03:56:24.556Z Has data issue: false hasContentIssue false

Strain-Controlled High Mobility in Modulation Doped Si0.5Ge0.5/Ge/Si1-xGex Hetero-Structures

Published online by Cambridge University Press:  28 February 2011

Masanobu Miyao
Affiliation:
Central Research Labratory, Hitachi Ltd., Kokubunji, Tokyo 185, Japan
Eiichi Murakami
Affiliation:
Central Research Labratory, Hitachi Ltd., Kokubunji, Tokyo 185, Japan
Hiroyuki Etoh
Affiliation:
Central Research Labratory, Hitachi Ltd., Kokubunji, Tokyo 185, Japan
Kiyokazu Nakagawa
Affiliation:
Central Research Labratory, Hitachi Ltd., Kokubunji, Tokyo 185, Japan
Get access

Abstract

Formation and characterization of a new hetero -structure of modulation doped p-Si0.5Ge0.5/Ge/Si1-xGex are comprehensively studied. In the MBE growth, thick Si1-xGex buffer layers are grown incommensurately at high temperature (520°C), and thin Si0.5Ge0.5/Ge layers are grown commensurately at low temperature (≦450°C). The strain field in the Ge channel layers can be precisely controlled by changing the Si composition (1-X) in the Si 1 -xGex buffer layers. As a result, a large energy discontinuity in the valence band (0.17 eV) is realized at the hetero -interface of p-Si0.5Ge0.5/Ge. This enables a high mobility of two -dimensional hole gas (4500 cm2/Vs) at 77 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Heteroepitaxy on Silicon: Fundamentals, Structures and Devices, eds. Choi, H.K., Hull, R., Ishiwara, H., and Nemanich, R. J. (Materials Research Society Symposium Proceedings vol. 116, Pittsburgh 1988).Google Scholar
2Patton, G.L., Iyer, S.S., Delage, S.L., Tiwari, S., and Storic, M.C., IEEE Trans. Electron Device Letters EDL–9, 165, (1988).Google Scholar
3Tatsumi, T., Hirayama, H., and Aizaki, N., Appl. Phys. Lett. 52, 895, (1988).Google Scholar
4Pearsall, T.P. and Bean, J.C., IEEE Trans. Electron Device Letters EDL–7, 308, (1986).Google Scholar
5Daembkes, H., Herzog, H-J., Jorke, H., Kibbel, H., and Kasper, E., IEEE Trans. Electron Devices ED–33, 633 (1986).Google Scholar
6People, R., Phys. Rev. B34, 2508 (1986).Google Scholar
7Wagner, G.R. and Janoko, M.A., Appl. Phys. Lett. 54, 66, (1989).Google Scholar
8Cerdeira, F., Pinczuk, A., Bean, J.C., Batlogg, B., and Wilson, B.A., Appl. Phys. Lett. 45, 1138, (1984).Google Scholar
9Silicon-Molecular Beam Epitaxy, edited by Rasper, E. and Bean, J.C., (CRC Press, Inc. Florida, 1988), p.102.Google Scholar
10People, R., Bean, J.C., Lang, D.V., Sergent, A.M., Stormer, H.L., Wecht, K.W., Lynch, R.T., and Baldwin, K., Appl. Phys. Lett. 45, 1231, (1984).Google Scholar