Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-20T19:19:49.739Z Has data issue: false hasContentIssue false

Strain Relaxation of Ion-implanted Strained Silicon on Relaxed SiGe

Published online by Cambridge University Press:  17 March 2011

A. F. Saavedra
Affiliation:
SWAMP Center, University of Florida, Gainesville, FL
A. N. Larsen
Affiliation:
Department of Physics and Astronomy, University of Aarhus, Aarhus, Denmark
J. Liu
Affiliation:
Varian Semiconductor Equipment Associates, Gloucester, MA
Get access

Abstract

The relaxation processes of strained silicon films on silicon-rich relaxed SiGe alloys have been studied. Experimental structures were generated via Molecular Beam Epitaxial (MBE) growth techniques and contain a strained silicon capping layer of approximately 50 nm. The relaxed SiGe alloy compositions range from 0 to 30 atomic% germanium. Samples received two distinct types of silicon implants. A 12 keV Si+ implant at a dose of 1×1015 atoms/cm2 was used to generate an amorphous layer strictly confined within the strained Si cap. An alternate 60 keV Si+ implant at a dose of 1×1015 atoms/cm2 was employed to create a continuous amorphous layer extending from the sample surface to a position 50 nm into the bulk SiGe material. The strain relaxation and regrowth processes are quantified through High Resolution X-Ray Diffraction (HRXRD) rocking curves and Cross-sectional Transmission Electron Microscopy (XTEM). The role of injected silicon interstitials upon the strain relaxation processes at the Si/SiGe interface after annealing at 600°C is investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Welser, J., Hoyt, J. L., Takagi, S., and Gibbons, J. F.. Tech. Dig. Int. Electron. Dev. Meetings, 947 (1994).Google Scholar
2. Rim, K., Hoyt, J. L., and Gibbons, J. F.. Tech. Dig. Int. Electron. Dev. Meetings, 707 (1998).Google Scholar
3. Rim, K., Welser, J., Hoyt, J. L.. and Gibbons, J. F.. Tech. Dig. Int. Electron. Dev. Meetings, 517 (1995).Google Scholar
4. Nayak, D. K., Goto, K., Yutani, A., Murota, J., and Shiraki, Y., IEEE Trans. Electron. Dev. 43, 1709 (1996).Google Scholar
5. Samavedam, S. B., Taylor, W. J., Grant, J. M., Smith, J. A., Tobin, P. J., Dip, A., and Liu, R.. J. Vac. Sci. Tech. B 17, 1424 (1999).Google Scholar
6. Sugii, N.. J. Appl. Phys. 89, 6459 (2001).Google Scholar
7. Koester, S. J., Rim, K., Chu, J. O., Mooney, P. M., and Ott, J. A.. Appl. Phys. Lett. 79, 2148 (2001).Google Scholar
8. Paine, D. C., Evans, N. D., and Stoffel, N. G.. J. Appl. Phys. 70, 4278 (1991).Google Scholar
9. Bai, G. and Nicolet, M.-A.. J. Appl. Phys. 71, 4227 (1992).Google Scholar
10. Atzmon, Z., Eizenberg, M., Shacham-Diamand, Y., Mayer, J. W., and Schaffler, F.. J. Appl. Phys. 75, 3936 (1994).Google Scholar
11. Glasko, J. M.. Ph. D. Dissertation (March 1999).Google Scholar
12. Haynes, T. E., Antonell, M. J., Lee, C. A., and Jones, K. S.. Phys. Rev. B. 51 7762 (1995).Google Scholar