Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T22:49:08.816Z Has data issue: false hasContentIssue false

Stimulated Emission at 258 nm in AlN/AlGaN Quantum Wells Grown on Bulk AlN Substrates

Published online by Cambridge University Press:  01 February 2011

R. Gaska
Affiliation:
Sensor Electronic Technology, Inc., Columbia, SC2909, U.S.A.
Q. Fareed
Affiliation:
Sensor Electronic Technology, Inc., Columbia, SC2909, U.S.A.
G. Tamulaitis
Affiliation:
Department of ECE and Broadband Center, RPI, Troy, NY 12180, U.S.A IMSAR, Vilnius University, Sauletekio 9-III, Vilnius, Lithuania
I. Yilmaz
Affiliation:
Department of ECE and Broadband Center, RPI, Troy, NY 12180, U.S.A
M.S. Shur
Affiliation:
Department of ECE and Broadband Center, RPI, Troy, NY 12180, U.S.A
C. Chen
Affiliation:
Department of EE, University of South Carolina, Columbia, SC 29208, U.S.A.
J. Yang
Affiliation:
Department of EE, University of South Carolina, Columbia, SC 29208, U.S.A.
E. Kuokstis
Affiliation:
Department of EE, University of South Carolina, Columbia, SC 29208, U.S.A. IMSAR, Vilnius University, Sauletekio 9-III, Vilnius, Lithuania
A. Khan
Affiliation:
Department of EE, University of South Carolina, Columbia, SC 29208, U.S.A.
J.C. Rojo
Affiliation:
Crystal IS, Inc., Latham, NY 12110, U.S.A.
L. J. Schowalter
Affiliation:
Crystal IS, Inc., Latham, NY 12110, U.S.A.
Get access

Abstract

We report on observation of stimulated emission at 258 nm in AlN/AlGaN multiple quantum wells. The structures were grown over Al-face single crystal bulk AlN substrates. AlN/AlGaN structures with 50% of Al in the well material were grown using low-pressure metalorganic chemical vapour deposition. Characterization by using X-ray, AFM, SEM, and photoluminescence techniques indicated high structural quality of the structures. The stimulated emission was measured using the variable stripe length method under excitation by 4-ns-long pulses of the fifth harmonic of Nd:YAG laser radiation at 213 nm (5.82 eV). The stimulated emission exhibited a characteristic superlinear dependence of emission intensity on the pump intensity as well as an exponential increase of the sample-edge emission intensity with increasing stripe length up to ∼430 μm and the intensity saturation beyond this range. The observation of stimulated emission at 258 nm is very promising for the future development of III-nitride-based deep-UV laser diodes on bulk AlN substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Liu, L., Edgar, J. H., Materials Science and Engineering R37, 61 (2002).Google Scholar
2. Adivarahan, V., Wu, S., Chitnis, A., Pachipulusu, R., Mandavili, V., Shatalov, M., Zhang, J. P., Khan, M. A., Tamulaitis, G., Sereika, A., Yilmaz, I., Shur, M. S., and Gaska, R., Appl. Phys. Lett. 81, 3666 (2002).Google Scholar
3. Shatalov, M., Chitnis, A., Mandavili, V., Pachipulusu, R., Zhang, J. P., Adivarahan, V., Wu, S., Simin, G., AsifKhan, M., Tamulaitis, G., Sereika, A., Yilmaz, I., Shur, M. S., Gaska, R., Appl. Phys. Lett. 82, 167 (2003).Google Scholar
4. Slack, G. A., J. Phys Chem. Solids 34, 321 (1973).Google Scholar
5. Slack, G. A. and McNelly, T., J. Cryst. Growth 34, 263 (1976); 42, 560 (1977).Google Scholar
6. Rojo, J. C., Slack, G. A., Morgan, K., Raghothamachar, B., Dudley, M., and Schowalter, L. J., J. Cryst. Growth 231, 317 (2001).Google Scholar
7. Schowalter, L. J., Shusterman, Y., Wang, R., Bhat, I., Arunmozhi, G., and Slack, G. A., Appl. Phys. Lett. 76, 985 (2000); J.C. Rojo, L.J. Schowalter, R. Gaska, M. Shur, M.A Khan, J. Yang, D.D. Koleske, J. Crystal Growth 240, 508 (2002)Google Scholar
8. Khan, M. Asif, Yang, J. W., Simin, G., Gaska, R., Shur, M. S., Loye, H.-C. zur, Tamulaitis, G., Zukauskas, A., Smith, D. J., Chandrasekhar, D., and Bicknell-Tassius, R., Appl. Phys. Lett. 76, 1161 (2000).Google Scholar
9. Li, J., Nam, K. B., Kim, K. H., Lin, J. Y., and Jiang, H. X., Appl. Phys. Lett. 78, 61 (2001).Google Scholar
10. Aumer, M.E., LeBoeuf, S.F., Moody, B.F., and Bedair, S.M., Appl. Phys.Lett. 79, 3803 (2001).Google Scholar
11. Zhang, J., Kuokstis, E., Fareed, Q., Wang, H., Yang, J., Simin, G., Khan, M. Asif, Gaska, R., and Shur, M., Appl. Phys. Lett. 79, 925 (2001).Google Scholar
12. Zhang, J. P., Wang, H.M., Gaevski, M.E., Chen, C. Q., Fareed, Q., Yang, J. W., Simin, G., and Khan, M. Asif, Appl. Phys. Lett. 80, 3542 (2002).Google Scholar
13. Gaska, R., Chen, C., Yang, J., Kuokstis, E., Khan, A., Tamulaitis, G., Yilmaz, I., Shur, M. S., Rojo, J. C., Schowalter, L. J., Appl. Phys. Lett. 81, 4658 (2002).Google Scholar
14. Vehse, M., Michler, P., Lange, O., Rowe, M., Gutowski, J., Bader, S., Lugauer, H. J., Bruderl, G., Weimar, A., Lell, A., and Harle, V., Appl. Phys. Lett. 79, 1763 (2001).Google Scholar