Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T14:02:18.255Z Has data issue: false hasContentIssue false

Steps on (001) Si Surfaces

Published online by Cambridge University Press:  28 February 2011

D. E. Aspnes
Affiliation:
Bell Communications Research, Inc., Red Bank, N.J. 07701–7020
J. Ihm
Affiliation:
Physics Department, Seoul National University, Seoul, Korea
Get access

Abstract

Primitive (001) surfaces contain only biatomic (ao/2) steps and thereby provide a topological way of suppressing antiphase domain formation in polar materials heteroepitaxially grown on nonpolar (001) substrates. We show that thermodynamic equilibrium is a necessary and sufficient condition to form primitive (001) Si surfaces due to a π-bonded step reconstruction that lowers the relative enthalpy of reconstructed [110] biatomic steps by 0.04 eV per step atom, and to correlation, which freezes out the step configurational entropy thereby suppressing the formation of all other types of steps. Implications for general vicinal (001) Si surfaces are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

1. Bringans, R. D., Olmstead, M. A., Uhrberg, R. I. G., and Bachrach, R. Z., in Proc. 18th Internat. Conf. Phys. Semicond. Stockholm, ed. Engstrom, O. (World Scientific, Singapore, 1987), p. 191.Google Scholar
2. Kroemer, H., J. Crystal Growth 8 193 (1987).Google Scholar
3. Pandey, K. C., Phys. Rev. Lett. 47 1913 (1981).Google Scholar
4. Aspnes, D. E. and Ihm, J., Phys. Rev. Lett. 57, 3054 (1986).Google Scholar
5. Chadi, D. J., Phys. Rev. Lett. 43, 43 (1979).Google Scholar
6. Ihm, J., Lee, D. H., Joannopoulos, J. D., and Xiong, J. J., Phys. Rev. Lett. 51 1872 (1983).Google Scholar
7. Aspnes, D. E. and Ihmn, J., J. Vac. Sci. Technol. (in press.)Google Scholar
8. Burton, W. K., Cabrera, N., and Frank, F. C., Phil. Trans. Roy. Soc. (London) A243, 299 (1951).Google Scholar
9. Chabal, Y. J. and Raghavachari, K., Phys. Rev. Lett. 5, 282 (1984).Google Scholar
10. Chabal, Y. J., Surface Science 168, 594 (1986).Google Scholar
11. Henzler, M. and Clabes, J., in Proc. 2nd Internat. Conf. on Solid Surfaces, Jpn. J. Appl. Phys., Suppl. 2, Pt. 2, 389 (1974).Google Scholar
12. Kaplan, R., Surface Sci. 93 145 (1980).Google Scholar
13. Sakamoto, T., Kawamura, T., and Hashiguchi, G., Appl. Phys. Lett. 48, 1612 (1986).Google Scholar
14. Bringans, R. D., Uhrberg, R. I. G., Olmstead, M. A., and Bachrach, R. Z, Phys. Rev. B 34 7447 (1986).Google Scholar
15. Akiyama, M., Kavarada, Y., Nishi, S., Ueda, T., and Kaminishi, K., in Heteroepitaxy on Silicon, Fan, J. C. C. and Poate, J. M., eds. (Mater. Res. Soc. Symp. Proc. 67, Pittsburgh, 1986), p. 53.Google Scholar
16. Ueda, T., Nishi, S., Kawarada, Y., Akiyama, M., and Kaminishi, K., J. Appl. Phys. Jpn. 25, L789 (1986).Google Scholar