Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-25T05:21:11.096Z Has data issue: false hasContentIssue false

Spectroscopic Properties of Cubic SiC on Si

Published online by Cambridge University Press:  11 February 2011

Z. C. Feng
Affiliation:
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332–0250, USA
D. N. Talwar
Affiliation:
Department of Physics, Indiana University of Pennsylvania, Indiana, PA 15705–1087, USA
I. Ferguson
Affiliation:
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332–0250, USA
Get access

Abstract

Spectroscopic studies are reported for cubic SiC grown on Si by chemical vapour deposition (CVD) manufacture technique. The UV excitation room temperature photoluminescence (PL)-Raman spectra exhibited 2.3 eV luminescence line due to RT recombination over the SiC indirect band gap. In addition to the optical phonons from cubic SiC we observed new Raman modes near 620 and 833 cm-1. A comprehensive analysis of the dynamical properties of defects using Green's function theory has suggested isolated impurity vibrations to be the possible origin for the additional phonons observed by Raman spectroscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Powell, J. A., Pirouz, P. and Choyke, W. J., in Semiconductor Interfaces, Microstructures and Devices: Properties and Applications, ed. Feng, Z. C., 1993, Institute of Physics Publishing, Bristol, pp. 257293, 1993.Google Scholar
2. Feng, Z. C., Mascarenhas, A. J., Choyke, W. J. and Powell, J. A., J. Appl. Phys. 64, 31763186 (1988).Google Scholar
3. Nishino, S., Powell, J. A. and Will, H. A., Appl. Phys. Lett. 42, 460462 (1983).Google Scholar
4. Davis, R. F., Kelner, G., Shur, M., Palmour, J. W. and Edmond, J. A., Proc. of IEEE, 79, 677701 (1991).Google Scholar
5. Powell, J. A., Matus, L. G. and Kuczmarski, M. A., J. Electrochem. Soc. 134, 15581565 (1987).Google Scholar
6. Tin, C. C., Hu, R., Coston, R. L. and Park, J., J. Crystal Growth 148, 116124 (1995).Google Scholar
7. Choyke, W. J., Matsunami, H. and Pensl, G. ed., Fundamental Questions and Applications of SiC, in Phys. Stat. Solidi (b) Vol. 202, No. 1 and (a) Vol. 162, No. 1 (1997).Google Scholar
8. Gubanov, V. A., and Fong, C. Y., Appl. Phys. Lett. 75, 8890 (1999).Google Scholar
9. Park, C. I., Kang, J. H., Kim, K. C., Nahm, K. S., Suh, E.-K. and Lim, K. Y., Thin Solid Films 401, 6066 (2001).Google Scholar
10. Chichibu, S. F., Sugiyama, M., Kuroda, T., Tackeuchi, A., Sota, T., DenBaars, S. P., Nakamura, S., Ishida, Y. and Okumura, H., Appl. Phys. Lett. 79, 36003602 (2001).Google Scholar
11. Ferguson, I. T., Tran, C., Karlicek, R., Stall, R., Devrajan, J. and Steckl, A., Institute of Physics Conference Series 155 (1996) p.593A;Google Scholar
Steckl, J., Devrajan, J., Tran, C. and Stall, R.A., Appl. Phys. Lett. 69, 2264 (1996).Google Scholar
12. Lei, Y. M., Yu, Y. H., Cheng, L. L., Sundaraval, B., Luo, E. Z., Ren, C. X., Zou, S. C., Wong, S. P., Chen, D. H. and Wilson, I. H., J. Appl. Phys. 88, 30533058 (2000).Google Scholar
13. Fissel, A., Richter, W., Furthmüller, J. and Bechstedt, F., Appl. Phys. Lett. 78, 25122514 (2001).Google Scholar
14. Nagasawa, H., Yagi, K. and Kawahara, T., J. Crystal Growth 237–239, 12441249 (2002).Google Scholar
15. Nishino, S., Jacob, C., Okui, Y., Ohshima, S. and Masuda, Y., J. Crystal Growth 237–239, 12501253 (2002).Google Scholar
16. Choyke, W. J., Feng, Z. C. and Powell, J. A., J. Appl. Phys. 64, 31633175 (1988).Google Scholar
17. Feng, Z.C., Chua, S.J., Evans, G.A., Steeds, J.W., Williams, K.P.J., and Pitt, G.D., Materials Science Forum 353–356, 345348 (2001).Google Scholar
18. Feng, Z. C., Tin, C. C., Hu, R. and Williams, J., Thin Solid Films 266, 17 (1995).Google Scholar
19. Shim, H. W., Kim, K. C., Seo, Y. H., Nahm, K. S., Suh, E.-K., Lee, H. J., and Hwang, Y. G., Appl. Phys. Lett. 70, 17571759 (1997).Google Scholar
20. Talwar, D. N., Ono, H. and Feng, Z. C., in 21st International Conference on the Physics of Semiconductors, edited by Jiang, P. and Zheng, H. Z., World Scientific, Singapore, p. 17011704 (1992);Google Scholar
Talwar, D. N. and Feng, Z. C., in “Silicon Carbides and Related Materials“, ed. by Spencer, M. G., Devaty, R. D., Edmond, J. A., Khan, M. A. and Rahman, M., Inst. Phys. Conf. Ser. No. 137, Institute of Physics Publishing, Bristol, p. 283286 (1994).Google Scholar
21. Feldman, D. W., Parker, J., Choyke, W. and Patrick, L., Phys. Rev. 173, 787 (1968).Google Scholar
22. Olego, D. and Cardona, M., Phys. Rev. B22, 894 (1980); B25, 1151 (1982).Google Scholar
23. Feng, Z. C., Choyke, W. J., and Powell, J. A., J. Appl. Phys. 64, 6827 (1988).Google Scholar
24. Widulle, F., Ruf, T., Buresch, O., Debernardi, A. and Cardona, M., Phys. Rev. Lett. 82, 3089–92 (1999).Google Scholar
25. Serrano, J., Strempfer, J., Carnoda, M., Schwoerer-Böhning, M., Requardt, H., Lorenzen, M., Stojetz, B., Pavone, P., and Choyke, W. J., Appl. Phys. Lett. 80, 43604362 (2002).Google Scholar
26. Talwar, D. N., Vandevyver, M., K, , Bajaj, K., and Theis, W. M., Phys. Rev. B33, 8525 (1986).Google Scholar
27. Choyke, W. J., in Radiation Damage and Defects in Semiconductors, Inst. Phys. Conf. Set. 31, 58 (1977);Google Scholar
Choyke, W. J., in Radiation Damage and Defects in Semiconductors, Inst. Phys. Conf. Set. 16, 218 (1973).Google Scholar