Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-21T00:21:07.046Z Has data issue: false hasContentIssue false

Spectroscopic Characterization of Ion-Implanted GaN

Published online by Cambridge University Press:  11 February 2011

L. Chen
Affiliation:
Department of Electrical Engineering and Center for Solid State Electronics Research, Arizona, State University, Tempe, AZ, 85287–5706, U.S.A.
B. J. Skromme
Affiliation:
Department of Electrical Engineering and Center for Solid State Electronics Research, Arizona, State University, Tempe, AZ, 85287–5706, U.S.A.
Get access

Abstract

We investigate implantation of high purity HVPE GaN with Mg, Be, C, Zn, Cd, Ca, N, O, P, As, Ne, and Ar. After annealing at 1300 °C, the material is characterized using low temperature photoluminescence (PL). The Mg acceptors exhibit much better optical activation than Be, C, Zn, Cd, or Ca acceptors implanted and annealed under the same conditions. Acceptor-bound exciton peaks and well-resolved donor-acceptor pair bands are observed for both Mg and Zn. A broad peak centered near 2.78 eV is obtained for Cd, confirming that it is deeper than Zn. Isoelectronic As or P exhibit sharp no-phonon bound exciton lines at 2.952 and 3.200 eV, respectively. Defect-related bands centered at 2.2 and 2.35 eV are studied. Both Be and C strongly enhance the yellow (2.2 eV) PL band, but no other impurities do so, including O.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Skromme, B.J. and Martinez, G.L., MRS Internet J. Nitride Semicond. Res. 5S1, W9.8 (2000).Google Scholar
2. Skromme, B.J., Martinez, G.L., Krasnobaev, L., and Poker, D.B., Mater. Res. Soc. Sympos. Proc. 639, G11.39 (2001).Google Scholar
3. Pankove, J.I. and Hutchby, J.A., J. Appl. Phys. 47, 5387 (1976).Google Scholar
4. Lagerstedt, O. and Monemar, B., J. Appl. Phys. 45, 2266 (1974)Google Scholar
5. Johnson, M.A.L., Yu, Z., Boney, C., Hughes, W.C., Cook, J.W. Jr, Schetzina, J.F., Zhao, H., Skromme, B. J., and Edmond, J.A., Mater. Res. Soc. Sympos. Proc. 449, 215 (1996).Google Scholar
6. Santic, B., Merz, C., Kaufmann, U., Niebuhr, R., Obloh, H., and Bachem, K., Appl. Phys. Lett. 71, 1837 (1997).Google Scholar
7. Reynolds, D. C., Look, D. C., Jogai, B., Phanse, V. M., and Vaudo, R. P., Solid State Commun. 103, 533 (1997).Google Scholar
8. Jadwisienczak, W.M. and Lozykowski, H.J., MRS Sympos. Proc. 482, 1033 (1998).Google Scholar
9. Ogino, T. and Aoki, M., Jpn. J. Appl. Phys. 18, 1049 (1979).Google Scholar
10. Mattila, T. and Zunger, A., Phys. Rev. B 58, 1367 (1998).Google Scholar
11. Van de Walle, C.G. and Neugebauer, J., Appl. Phys. Lett. 76, 1009 (2000).Google Scholar
12. Stötzler, A., Weissenborn, R., and Deicher, M., Mater. Res. Soc. Sympos. Proc. 595, W12.9 (2000).Google Scholar
13. Neugebauer, J. and Van de Walle, C.G., Appl. Phys. Lett. 69, 503 (1996).Google Scholar
14. Zhang, R., Zhang, L., Perkins, N., and Kuech, T.F., MRS Proc. 512, 321 (1998).Google Scholar
15. Mattila, T. and Nieminen, R.M., Phys. Rev. B 55, 9571 (1997).Google Scholar
16. Saarinen, K. et al., Phys. Rev. Lett. 79, 3030 (1997).Google Scholar
17. Naranjo, F.B., Sanchez-Garcia, M.A., Pau, J.L., Jimenez, A., Calleja, E., Munoz, E., Oila, J., Saarinen, K., and Hautojarvi, P., Phys. Stat. Sol. (a) 180, 97 (2000).Google Scholar