Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-19T22:50:30.819Z Has data issue: false hasContentIssue false

Spatially Reversible Electric Field-Induced Permeation in Pure and Mixed Langmuir-Blodgett Layers of Hemicyanine Dyes and Octadecanoic Acid on Poly(2-Vinylpyridine)

Published online by Cambridge University Press:  21 February 2011

W. Lu
Affiliation:
Department of Chemistry and Beckman Institute, University of Illinois 600 S. Mathews, Urbana, IL 61801
Q. Song
Affiliation:
Department of Chemistry and Beckman Institute, University of Illinois 600 S. Mathews, Urbana, IL 61801
P.W. Bohn
Affiliation:
Department of Chemistry and Beckman Institute, University of Illinois 600 S. Mathews, Urbana, IL 61801
Get access

Abstract

Langmuir-Blodgett (LB) films of the hemicyanine dyes 4-(4-dihexadecylaminostyryl)- N-methylpyridinium iodide and 4-(4-dioctylaminostyryl)-N-propylsulfonate pyridinium mixed with octadecanoic acid have been deposited onto H2O-swollen poly(2-vinylpyridine) (P2VP) as mass transport barriers. The transport properties of these structures have been studied both with and without the application of an electric field in the range 0 ≤ E ≤ 100 V/cm, by observing the rate of permeation of both anionic (fluorescein) and zwitterionic (rhodamine B) fluorophores. The apparent diffusion coefficient at E = 0 decreases exponentially with the number of monolayers through which the probe molecule must permeate, in agreement with a hole-mediated permeation model. Application of an external electric field is observed to control the rate and direction of the mass transport of the probe molecule across the barrier layer. The electric field effect is both spatially reversible, i.e. the probe can be transported in either direction across the barrier layer, and temporally reversible, i.e. the permeability cycles with the field between large values when the field is on and small values when it is not applied. The results are consistent with an interpretation in which electroporation is the dominant mechanism for transport in the field-on state.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Roberts, G.G. in ”Langmuir-Blodgett Films”, Roberts, G.G. (ed). Plenum Press: New York, 1990, Ch. 7.Google Scholar
2. Higashi, N.; Kunitake, T. and Kajiyama, T. Polym. J 1987, 19, 289.Google Scholar
3. Heckman, K.; Strobl, C. and Bauer, S. Thin Solid Films 1983, 99, 265.Google Scholar
4. Nagase, S.; Kataoka, M.; Naganawa, R.; Komatsu, R.; Odashima, K.; Umezawa, Y. Anal. Chem. 1990, 62, 1252.Google Scholar
5. Sugawara, M.; Kojima, K.; Sazawa, H.; Umezawa, Y. AnaL Chem. 1987, 59, 2842.Google Scholar
6. Odashima, K.; Sugawara, M.; Umezawa, Y. Trends Anal. Chem. 1991, 10, 207.Google Scholar
7. Fell, N.F. Jr., ”Characterization of Diffusion Process in Thin Polymer Films via Optical Waveguide Techniques”, Ph. D. thesis, University of Illinois at Urbana-Champaign, 1993.Google Scholar
8. Fell, N.F. Jr.,; Bohn, P.W. Anal. Chem. 1993, 65, 3382.Google Scholar
9. (a) Heckl, W.M.; Miller, A.; Möhwald, H. Thin Solid Films 1988, 159, 125. (b) Lee, K.Y.C.; Klinger, J.F.; McConnell, H.M. Science 1994, 263, 655.Google Scholar
10. (a) Okahata, Y. Acc. Chem. Res. 1986, 19, 57. (b) Okahata, Y.; Hachiya, S.; Ariga, K.; Seki, T. J Am. Chem. Soc. 1986, 108, 2863. (c) Okahata, Y.; Shimizu, A. Langmuir 1989, 5,954.Google Scholar
11. For references on H-aggregation in general, see (a) and (b). For references on H-aggregation of hemicyanine dyes, see (c) and (d). (a) Mooney, W.F. III;, Brown, P.E.; Russel, J.C.; Costa, S.B.; Pedersen, L.G.; Whitten, D.G. J. Am. Chem. Soc. 1984, 106, 5659. (b) Mooney, W.F., III; Whitten, D.G. J. Am. Chem. Soc. 1986, 108, 5712. (c) Schildkraut, J.S.; Penner, T.L.; Willand, C.S.; Ulman, A. Opt. Lett. 1988, 13, 134. (d) Carpenter, M.A.; Willand, C.S.; Penner, T.L.; Williams, D.J.; Mukamel, S. J. Phys. Chem. 1992, 96, 2801.Google Scholar
12. (a) Evans, C.;Bohn, P.W. J Am. Chem. Soc. 1993, 115, 3306. (b) Song, Q.; Evans, C.E.; Bohn, P.W. J Phys. Chem. 1993, 97, 13736. (c) Evans, C.E.; Song, Q.; Bohn, P.W. J Phys. Chem. 1993, 97, 12302. (d) Song, Q.; Xu, Z.; Lu, W.; Bohn, P.W. Coll. Surf 1994, 93, 73.Google Scholar
13. Crank, J. ”The Mathematics ofDiffusion” 2nd Ed., Oxford University Press: Oxford, 1975, Ch. 4.Google Scholar
14. Guillet, J. ”Polymer Photophysics and Photochemistry: An Introduction to the Study of Photoprocesses in Macromolecules”, Cambridge University Press: Cambridge, 1985. Chapter 8.Google Scholar
15. (a) Barnes, G.T.; Quickenden, T.I. . Coll. Interf Sci. 1971, 37, 581. (b) Barnes, G.T.; Quickenden, T.I.; Saylor, J.E. . Coll. Interf Sci. 1970, 33, 236.Google Scholar
16. (a) Dickinson, E. J Coll. Interf Sci. 1978, 63, 461. (b) Dickinson, E.J. J. Chem. Soc. Faraday Trans. II 1978, 63, 461.Google Scholar
17. Milliken, J.O.; Zollweg, J.A.; Bobalek, E.G. J Coll. Interf Sci. 1980, 77, 41.Google Scholar
18. (a) Bourdieu, L.; Ronsin, O.; Chatenay, D. Science 1993, 259, 798. (b) Schwartz, D.K.; Viswanathan, R.; Zasadzinski, J.A.N. Phys. Rev. Lett. 1993, 70, 1267. (c) Gaines, G.L.; Ward, W.J., III. J. Coll. InterfSci. 1977, 60, 210.Google Scholar
19. Heller, J. Crit. Rev. Ther. Drug Carr. Sys. 1993, 10, 253.Google Scholar
20. (a) Crowley, J.M. Biophys. J. 1973, 13, 711. (b) White, S. Biophys. J. 1974, 14, 155. (c) Zimmermann, U.; Pilwat, G.; Riemann, F. Biophys. J. 1974, 14, 881. (d) Zimmermann, U.; Pilwat, G.; Riemann, F. Biochim. Biophys. Acta 1975, 375, 209. (e) Zimmermann, U.; Pilwat, G.; Holzapfel, Chr.; Rosenheck, K. J. Membr. Biol. 1976, 30, 135.Google Scholar