Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-21T15:50:41.184Z Has data issue: false hasContentIssue false

Sorption of Molybdenum(VI) on Synthetic Magnetite

Published online by Cambridge University Press:  21 March 2011

Miquel Rovira
Affiliation:
Environmental Technology Area-CTM Centre Tecnològic, Manresa, Spain Department of Chemical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
Joan de Pablo
Affiliation:
Environmental Technology Area-CTM Centre Tecnològic, Manresa, Spain Department of Chemical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
I. Ignasi Casas
Affiliation:
Department of Chemical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
Javier Giménez
Affiliation:
Department of Chemical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
Frederic Clarens
Affiliation:
Environmental Technology Area-CTM Centre Tecnològic, Manresa, Spain
Xavier Martinez-Lladó
Affiliation:
Environmental Technology Area-CTM Centre Tecnològic, Manresa, Spain
Get access

Abstract

In this study we experimentally investigated the interaction of Mo(VI) with magnetite, which is a corrosion product of steel. The work was conducted with commercial magnetite, and we studied the influence of pH, pe and solid/liquid ratio on Mo sorption. A Surface Complexation Model (SCM) has been applied tothe experimental data, allowing to explain the results using the Diffuse Layer Model (DLM) and by considering the formation of the monodentate complex: >FeOMo(OH)5. At pH 2, experimental data were satisfactorily fitted to a a Langmuir isotherm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Smailos, E., Swarzkopf, W., Kienzlev, B. and Köster, R. Corrosion of carbon-steel containers for heat-generating nuclear water in brine environment for a rock-salt repository. Mat. Res. Soc. Symp. Proc. 257, 399406.Google Scholar
2. Rovira, M., de Pablo, J., El Aamrani, S., Duro, L., Grivé, M. And Bruno, J. Study of the role of magnetite in the immobilisation of U(VI) by reduction to U(IV) under the presence of H2(g) in hydrodgen carbonate medium. SKB Technical Report TR-03-04 (SKB, Stockholm, Sweden, 2003).Google Scholar
3. Grivé, M.(2005) The linkage between uranium, iron and carbon cycling. Ph. D. dissertation, Universitat Politècnica de Catalunya (Spain, 2004).Google Scholar
4. Powell, B. A., Fjeld, R. A., Kaplan, D. I., Coates, J. and Serkiz, S. M. Pu(V)O2+ adsorption and reduction by synthetic magnetite (Fe3O4). Environ. Sci. Technol. 38, 6016 (2004).Google Scholar
5. Martínez, M., Giménez, J., de Pablo, J., Rovira, M., Duro, L. Sorption of selenium(IV) and selenium(VI) onto magnetite. Appl. Surf. Sci. (in press).Google Scholar
6. White, A.F. and Peterson, M.L. Reduction of aqueous transition metal species on the surfaces of Fe(II)-containing oxides. Geochim. et Cosmochim. Acta 60, 3799 (1996).Google Scholar
7. Bruno, J., Cera, E., Grivé, M., Eklund, U. and Eriksen, T. Experimental determination and chemical modelling of radiolytic processes at the spent fuel/water interface. SKB Technical Report TR-99-26 (SKB, Stockholm, Sweden, 1999).Google Scholar
8. Adriano, D.C., Trace Elements in Terrestrial Environments. 2nd Ed. (Springer, New York, 2001), pp. 587624.Google Scholar
9. McKenzie, R.M. The adsorption of molybdenum on oxide surfaces. Aust. J. Soil Res 21, 505 (1983).Google Scholar
10. Gufstafsson, J. P. Modelling molybdate and tungstate adsorption to ferrihydrite. Chem. Geol. 200, 105 (2003).Google Scholar
11. Balistrieri, L.S. and Chao, T.T. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide. Geochim. Cosmochim. Acta 54, 739 (1990).Google Scholar
12. Goldberg, S. and Forster, H.S. Factors affecting molybdenum adsorption by soils and minerals. Soil Sci. 163 (2), 109 (1998).Google Scholar
13. Turner, D. R. Mechanistic approaches to radionuclide sorption modeling. (Center for Nuclear Waste Regulatory Analyses, San Antonio, Texas, 1993).Google Scholar
14. Herbelin, A.L., Westall, J.C. FITEQL 4.0: a Computer Program for Determination of Chemical Equilibrium Constants from Experimental Data. (Department of Chemistry, Oregon State University, Corvallis, 1999).Google Scholar
15. Davies, J.A. and Kent, D.B. Surface complexation modeling in aqueous geochemistry. Rev. Mineralogy 23, 117 (1990).Google Scholar
16. Missana, T., García, M. and Maffiotte, C. Uranium(VI) sorption on goethite: Experimental study and surface complexation modelling. ENRESA Report 02/2003 (Enresa, Madrid, Spain, 2003).Google Scholar
17. Smith, R.M. and Martell, A.E. Critical stability constants. Vol. 4 Inorganic complexes. (Plenum Press, New York, 1976).Google Scholar
18. Dzombak, D. A. and Morel, F. M. M. Surface Complexation Modeling. Hydrous Ferric Oxide. (Wiley-Interscience, New York, 1990).Google Scholar
19. Puigdomènech, I. Computer program MEDUSA v.3. (Royal Institute of Technology, KTH, Stockholm, Sweden, 1998).Google Scholar