Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-20T16:46:40.175Z Has data issue: false hasContentIssue false

Some Transition Ions in Heavy Metal Fluoride Glasses

Published online by Cambridge University Press:  25 February 2011

L. D. Bogomolova
Affiliation:
Institute of Nuclear Physics, Moscow State University, Moscow 119889, USSR
F. Caccavale
Affiliation:
Institute of Nuclear Physics, Moscow State University, Moscow 119889, USSR
N. A. Krasil'nikova
Affiliation:
Institute of Nuclear Physics, Moscow State University, Moscow 119889, USSR
Get access

Abstract

The heavy metal fluoride glasses (HMFG) have attracted considerable attention in recent years because of their unusual physical and chemical properties which allow potential use in numerous electrical and optical applications. The HMFG are transparent over a wide range of the optical spectrum (from 220 nm to 8,μ) and have sufficient chemical stability to make them a suitable optical material middle IR fibers optics. Their high anionic conductivity permits their application as solid electrolytes. They are also of interest scientifically since their structure is different from that of other inorganic glasses. The high coordination number of the network formers ions is the principal structural peculiarity of the HMFG.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bogomolova, L. D., Grechko, E. G., Jachkin, V. A., Krasil'nikova, N. A., Sacharov, V. V., Sigaev, V. V. and Reiman, S. I., XIV Intern. Congress on Glass (New Delhi 1986), Collected Papers published by Indian Ceramic Soc., Central Glass and Ceram. Res. Inst., Calcutta, 1 p. 178 (1986).Google Scholar
2. Abdrashitova, E. I. and Petrovsky, G.T., Spectr. Iv. Tela. 1969 (4), 64 (in Russian).Google Scholar
3. Petrovsky, G. T. and Abdrashitova, E. I., Fiz. Khim. Stekla 9 (4), 385 (1983).Google Scholar
4. Friebel, C., Pebler, J., Steffens, F., Weber, M. and Reinen, D., J. Sol. State Chem. 46, 253 (1983).Google Scholar
5. Siegel, I. and Jones, E. P., J. Chem. Phys. 37. 2364 (1972).Google Scholar
6. Misra, B. N. and Kripal, R., J. Chem. Phys. 19 17 (1977).Google Scholar
7. Parker, I. M., J. Phys. C.: Sol. State 4, 2697 (1971).Google Scholar
8. Hoffman, S. K. and Goslar, J., J. Sol. State Chem. 44, 343 (1982).Google Scholar
9. Bogomolova, L. D., Pavlushkina, T. K. and Roschina, A. V., J. Non-Crystalline Sol. 58 99 (1983).CrossRefGoogle Scholar
10. De Wijn, H. W. and Van Balderen, R. F., J. Chem. Phys. 46, 1381 (1967).Google Scholar
11. Griscom, D. L., Stapelbrock, M. M. and Wever, M. J., J. Non-Crystalline Sol. 41, 329 (1980).Google Scholar
12. Wickman, H. H., Klein, M. P. and Shirley, D. A., J. Chem. Phys. 42, 2113 (1965).CrossRefGoogle Scholar
13. Coupe, R., Louer, D., Lucas, J. and Loenard, A. J., J. Amer. Ceram. Soc. 66, 523 (1983).CrossRefGoogle Scholar
14. Almeida, R. M. and Mackenzie, J. D., J. Chem. Phys. 74, 5954 (1981).Google Scholar
15. Almeida, R. M. and Mackenzie, J. D., J. Chem,. Phys. 78, 6502 (1983).Google Scholar
16. Kawamoto, Y. and Sakaguchi, F., Bull. Chem. Soc. Jap. 56, 2138 (1983).CrossRefGoogle Scholar
17. Kawamoto, Y. and Horisaka, T., J. Non-crystalline Sol. 56, 39 (1983).Google Scholar
18. Richardson, R. J., Lee, Sook and Menne, T. J., Phys. Rev. B6, 1065 (1972).Google Scholar
19. Keve, E. T., Abrahams, S. C. and Berstein, J. L., J. Chem. Phys. 51 4928 (1969).CrossRefGoogle Scholar
20. Jacoboni, C., Bail, A.Le and De Pape, R., Glass Technol. 24, 164 (1983).Google Scholar
21. Kawamoto, Y., Nohara, I., Hiroa, K. and Soga, N., Sol. State Commun. 51, 769 (1984).Google Scholar
22. Danon, J., Rev. Modern Phys. 36 459 (1964).Google Scholar
23. Leblanc, M., Ferey, G., Chevallier, P., Calage, Y. and De Pape, R., Sol. State Chem.47, 53 (1983).Google Scholar
24. Bogomolova, L., Caccavale, F., Krasil'nikova, N. A. and Reiman, S. I., to be published in J. Non-Crystalline Sol.Google Scholar
25. Griscom, D. L., J. Non-Crystalline Sol. 40, 211 (1980).CrossRefGoogle Scholar
26. Scullane, M. I., White, L. K. and Chasteen, N. D., J. Magn. Res. 47, 383 (1982).Google Scholar
27. Schreurs, J. M., J. Chem. Phys. 69, 2152 (1978).Google Scholar
28. Bogomolova, L. D., Grechko, E. G., Krasil'nikova, N. A. and Sacharov, V. V., J. Non-Crystalline Sol. 69 299 (1985).Google Scholar
29. Abragam, A. and Bleaney, B., Electron Paramagnetic Resonance of Transition Ions, (Claredon Press, Oxford, 1970).Google Scholar
30. Cases, R., Griscom, D. L. and Tran, D. C., J. Non-Crystalline Sol. 72, 51 (1985).Google Scholar
31. Grishin, I. A., Dianov, E. M., Kiselev, N. I., Kornienko, L. S., Plotnichenko, V. G., Rybaltovsky, A. O., Sysoev, V. K. and Chernov, P. V., Fiz. Khim. Stekla 10 252 (1980) (in Russian).Google Scholar