Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-27T10:40:11.236Z Has data issue: false hasContentIssue false

Solution-Derived Yba2Cu,Sub3O7−Δ. Thin Films And Barrier Layers

Published online by Cambridge University Press:  28 February 2011

G. E. Whitwell
Affiliation:
Akzo Chemicals Inc., Akzo Research Laboratory Dobbs Ferry Livingstone Ave., Dobbs Ferry, NY 10522
J. H. Wandass
Affiliation:
Akzo Chemicals Inc., Akzo Research Laboratory Dobbs Ferry Livingstone Ave., Dobbs Ferry, NY 10522
F. M. Cambria
Affiliation:
Akzo Chemicals Inc., Akzo Research Laboratory Dobbs Ferry Livingstone Ave., Dobbs Ferry, NY 10522
M. F. Antezzo
Affiliation:
Akzo Chemicals Inc., Akzo Research Laboratory Dobbs Ferry Livingstone Ave., Dobbs Ferry, NY 10522
Get access

Abstract

Hydrolyzed metal alkoxide solutions were spin-coated on Si substrates with subsequent thermal processing. Barrier layers of alkaline earth oxides, perovskites, Y2O3, ZrO2 and others were produced. Characterization was performed via SEM, XRD, ESCA, Auger depth profiling and resistivity measurements. Barrier layer films were fairly smooth with some cracking and pitting present. Si migration was severe for alkaline earth thin films on Si wafers. Some perovskite films on Si showed formation of Ba-Si-O phases at the Si interface. Thin films of 1–2–3 on barrier layers of SrTiO3 or ZrO2 on Si showed Ba pileup at the Si interface and were not superconducting. 1–2–3 layers deposited on single crystal ZrO2 were superconducting and showed onset temperatures of 90 K with zero resistance reached at about 55 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chaudhari, P., Koch, R. H., Laibowitz, R. B., McGuire, T. R., Gambino, R. J., Phys. Rev. Lett. 58, 2684 (1987).Google Scholar
2. Wong, M., Liou, S. H., Kwo, J., Davidson, B. A., Appl. Phys. Lett. 51, 694, (1987).Google Scholar
3. Narayan, J., Biunno, N., Singh, R., Holland, O. W., Auciello, O., Appl. Phys. Lett. 52, 1845, (1988).Google Scholar
4. Rice, C. E., VanDover, R. B., Fisanick, G. J., Appl. Phys. Lett. 51, 1842, (1987).Google Scholar
5. Gross, M. E., Hong, M., Liou, S. H., Gallagher, P. K., Kwo, J., Appl. Phys. Lett. 52, 160, (1988).Google Scholar
6. Kramer, Moore, G., Kordas, S., G., Mater. Lett. 7 (12), 415, (1989).Google Scholar
7. Cheung, C. T., Ruckenstein, E., J. Mater. Res. 4 (1), 1, (1989)Google Scholar
8. Venkatesan, T., Chase, E. W., Wu, X. D., Inam, A., Chang, C. C., Shokoohi, F. K., Appl. Phys. Lett. 53(3), 243, (1988).Google Scholar
9. Mogro-Campero, A., Hunt, B. D., Turner, L. G., Burrell, M. S., Balz, W. E., Appl. Phys. Lett. 52, 584, (1988).Google Scholar
10. U. S. Patent 4,751,318, W. Summers and E. W. Burkhardt.Google Scholar
11. Truman, J. K., Leskela, M., Mueller, C. H., Holloway, P. H., preprint from 1988 AVS High Temperature Superconductor Topical Conference.Google Scholar
12. Grepstad, J. K., Niedermann, Ph., Triscone, J. M., Antognazza, L., Karkut, M. G., Fischer, O. Physica C, 153–155, 1453, (1988).Google Scholar
13. Mogro-Campero, A., Turner, L. G., Hall, E. L., Burrell, M. C., Appl. Phys. Lett., 52 (24), 2068, (1988).Google Scholar