Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T03:53:59.579Z Has data issue: false hasContentIssue false

Solubility Products for Precipitate Phases in Steels from First-principles Calculations

Published online by Cambridge University Press:  27 September 2011

Tetyana Klymko
Affiliation:
Materials innovation institute, Mekelweg 2, 2628 CD, Delft, the Netherlands. Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, the Netherlands.
Chaitanya Krishna Ande
Affiliation:
Materials innovation institute, Mekelweg 2, 2628 CD, Delft, the Netherlands. Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, the Netherlands.
Marcel Sluiter
Affiliation:
Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, the Netherlands.
Get access

Abstract

The work presented gives an insight into using formation enthalpies determined from ab initio calculations for computing solubility products in steels. The role of enthalpy and entropy contributions to the solubility product is discussed. As an illustration of the method, we present solubility products for observed stoichiometric precipitate phases in ferrite from first-principles calculations and in austenite as obtained from the combined approach based on ab initio and experimental phase diagram analysis. The results are compared with experimental data where available.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Senuma, T., ISIJ Int. 42, 1 (2002).Google Scholar
2. DeArdo, A.J., Mater. Sci. Forum 15, 284286 (1998).Google Scholar
3. Tamehiro, H., Murata, M., Habu, R., Nagumo, M., Trans. ISIJ 27, 130 (1987).Google Scholar
4. Tamehiro, H., Murata, M., Habu, R., Nagumo, M., Trans. ISIJ 27, 120 (1987).Google Scholar
5. Yi, H.-L., Du, L.-X., Wang, G.-D., Liu, X.-H., ISIJ Int. 46, 754 (2006).Google Scholar
6. Nawrocki, J.G., DuPont, J.N., Ackland, D.W., Marder, A.R., Scripta Mater. 45, 139 (2001).Google Scholar
7. Wakoh, M., Sawai, T., Mizoguchi, S., ISIJ Int. 36, 1014 (1996).Google Scholar
8. Piekarski, B., Mater. Charact. 47, 181 (2001).Google Scholar
9. Hanzaki, A.Z., Hodgson, P.D., Yue, S., ISIJ Int. 25, 324 (1995).Google Scholar
10. Ikematsu, Y., Sugiyama, M., Shigesato, G. in Nippon Steel Technical Report 91, 18 (2005).Google Scholar
11. Hudd, R.C., Jones, A., Kale, M.N., J. Iron Steel Inst. 209, 121 (1971).Google Scholar
12. Davis, C.L., Strangwood, M., J. Mater. Sci. 37, 1083 (2002).Google Scholar
13. Suehiro, M., ISIJ Int. 38, 547 (1998).Google Scholar
14. Danoix, F., Bemont, E., Maugis, P., Blavette, D., Adv. Eng. Mater. 8, 1202 (2006).Google Scholar
15. Miyazaki, A., Takao, K., Furukimi, O., ISIJ Int. 42, 916 (2002).Google Scholar
16. Takahama, Y., Sietsma, J., ISIJ Int. 48, 512 (2008).Google Scholar
17. Yu, Q., Wang, Z., Liu, X., Wang, G., Mater. Sci. Eng. A 379, 384 (2004).Google Scholar
18. Chen, C.Y., Yen, H.W., H Kao, F., C Li, W., Huang, C.Y., Yang, J.R., Wang, S.H., Mater. Sci. Eng. A 499, 186 (2009).Google Scholar
19. Zhou, J., Kang, Y., Mao, X., J. Univ. Sci. Techn. Beijing 15, 389 (2008).Google Scholar
20. Sharma, R.C., Lakshmanan, V.K., Kirkaldy, J.S., Metall. Trans. 15A, 545 (1984).Google Scholar
21. Li, P.H., Ibraheem, A.K., Priestner, R., Mater. Sci. Forum 284-286, 517 (1998).Google Scholar
22. Kothe, A., Kunze, J., Backmann, G., Mickel, C., Mater. Sci. Forum 284-286, 493 (1998).Google Scholar
23. Zhou, C., Priestner, R., ISIJ Int. 36, 1397 (1996).Google Scholar
24. Li, Y., Wilson, J.A., Crowther, D.N., Mitchell, P.S., Craven, A.J., Baker, T.N., ISIJ Int. 44, 1093 (2004).Google Scholar
25. Houghton, D.C., Acta Metall. Mater. 41, 2993 (1993).Google Scholar
26. Strid, J., Easterling, K.E., Acta Metal. 33, 2057 (1985).Google Scholar
27. Raybaud, P. et al. , J. Phys.: Condens. Matter. 9, 11085 (1997).Google Scholar
28. Sluiter, M.H.F., Comp. Coup. Ph. Diagr. Thermochem. 30, 357 (2006).Google Scholar
29. Wang, Y. et al. , CALPHAD 28, 79 (2004).Google Scholar
30. Zhao, E., Wang, J., Meng, J., Wu, Z., Comp. Mater. Sci. 47, 1064 (2010).Google Scholar
31. Du, Y.L., Sun, Z.M., Hashimoto, H., Tian, W.B., Mater. Trans. 50, 2173 (2009).Google Scholar
32. Du, Y.L., Sun, Z.M., Hashimoto, H., Physica B 405, 720 (2010).Google Scholar
33. Iikubo, S., Ohtani, H., Hasebe, M., Mater. Trans. 51, 574 (2010).Google Scholar
34. Zhang, M., He, J., Surf. Coat. Techn. 142, 125 (2001).Google Scholar
35. Jochym, P.T., Parlinski, K., Sternik, M., Eur. Phys. J. B 10, 9 (1999).Google Scholar
36. Andersson, D.A., Korzhavyj, P.A., Johansson, B., Comp. Coup. Ph. Diagr. Thermochem. 32, 543 (2008).Google Scholar
37. Simonovic, D., Sluiter, M.H.F., Phys. Rev B 79, 054304 (2009).Google Scholar
38. Ohnuma, T., Soneda, N., Iwasawa, M., Acta Mater. 57, 5947 (2009).Google Scholar
39. Huang, S., Worthington, D.L., Asta, M., Ozolins, V., Ghosh, G., Liaw, P.K., Acta Mater. 58, 1982 (2010).Google Scholar
40. van der Ven, A, Yu, H.-C., Ceder, G., Thornton, K., Progr. Mater. Sci. 55, 61 (2010).Google Scholar
41. Perez, R.A., Weissmann, M., J.Phys.: Condens. Matter 16, 7033 (2004).Google Scholar
42. Pauling, Linus, “General Chemistry” , ed. Freeman, W.H., (Dover Publishing, 1970).Google Scholar
43. Inoue, K., Ohnuma, I., Ohtani, H., Ishida, K., Nishizawa, T., ISIJ Int. 38, 991 (1998).Google Scholar
44. Kunze, J., Metal. Sci. 16, 217 (1982).Google Scholar
45. Kunze, J., Steel Research 62, 430 (1991).Google Scholar
46. Kunze, J., “ Nitrogen and Carbon in Iron and Steel” , Thermodynamics, (Akademie Verlag, 1990).Google Scholar
47. Turkdogan, E.T., Trans. ISS 61 (1989).Google Scholar
48. Narita, K., J. Chem. Soc. Japan 77, 1536 (1956).Google Scholar
49. Roberts, W. in Tech. Rep. IM1085, Swedish Institute for Metals Research, (1975).Google Scholar
50. Wada, H., Pehlke, R. D., Metal. Trans. B 16B, 815 (1985).Google Scholar
51. Kobayashi, H., ISIJ Int. 32, 973 (1992).Google Scholar
52. Irvine, K.J., Pickering, F.B., Gladman, T., ISIJ Int. 205, 161 (1967).Google Scholar
53. Balasubramanian, K., Kiraldy, J.S., CALPHAD 10, 187 (1986).Google Scholar
54. Chino, H., Wada, H. in Yutawa Tech. Rep. 251, 5817 (1965).Google Scholar
55. Taylor, K. A., Scripta Metal. Mater. 32, 7 (1995).Google Scholar
56. Matsuda, S., Okumura, N., Trans. ISIJ 18, 197 (1978).Google Scholar
58. Monkhorst, H.J., Pack, J.D., Phys. Rev. B 13, 5188 (1976).Google Scholar
59. Vosko, S.H., Wilk, L., Nusair, M., Canadian J. Phys. 58, 1200 (1980).Google Scholar
60. Ande, C.K., Sluiter, M.H.F., Acta Mater. 58, 6276 (2010)Google Scholar
62. Massalski, T., Mater. Trans. 51, 583 (2010).Google Scholar
63. Massalski, T., Laughlin, D.E., CALPHAD 33, 3 (2009).Google Scholar
64. Gustafson, P., Metal. Trans. A 18, 175 (1987).Google Scholar
65. Dippenaar, R. J., Phelan, D. J., Metal. Mater. Trans. B 34, 495 (2003).Google Scholar
66. Jonsson, S., Zeitschrift fur Metallkunde 87, 703 (1996).Google Scholar
67. Jonsson, S., Zeitschrift fur Metallkunde 87, 691 (1996).Google Scholar
68. Li, Y., Fruehan, R.J., Metal. Mater. Trans. B 32B, 1203 (2001)Google Scholar
69. Takemoto, S., Nitta, H., Jijima, Y., Yamazaki, Y., Phil. Mag. 87, 1619 (2007).Google Scholar
70. Haglund, O., J. Therm. Analysis 25, 21 (1982).Google Scholar