Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-29T05:12:08.568Z Has data issue: false hasContentIssue false

The Solubility of Some Alkali-Bearing Zr Minerals in Hydrothermal Solutions

Published online by Cambridge University Press:  10 February 2011

S. U. Aja
Affiliation:
Department of Geology, Brooklyn College, Brooklyn NY 11210, svabc@cunyvm.cuny.edu
S. A. Wood
Affiliation:
Department of Geology and Geological Engineering, University of Idaho, Moscow, ID 83843
A. E. Williams-Jones
Affiliation:
Department of Earth and Planetary Sciences, McGill University, Montreal, H3A 2A7, Canada
Get access

Abstract

The hydrolytic dissolution of some Zr-bearing minerals has been measured in aqueous KCl and KF solutions. Depending on the mineral being investigated, Zr concentrations varied from about 9 ppb to nearly 40 ppm in equilibrated solutions; this validates the notion of Zr mobility in some crustal fluids. At 50 °C, ΔfG were determined (using the measured solubility products) for Na catapleiite, elpidite, vlasovite and weloganite to be -4654.2±5.6, -7391.0±11.6, -5181.0±7.3 and -7130.5±1.0 kJ/mol, respectively. Calculated phase relationships amongst the zirconosilicates found at the Strange Lake peralkaline complex indicate that elpidite and gittinsite cannot coexist stably implying a two-stage hydrothermal mineralization process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Aja, S. U.., Wood, S.A. and Williams-Jones, A.E., Applied Geochemistry 10, p. 603 (1995).Google Scholar
2. Ewing, R. C., Lutze, W. and Weber, W.J., J. Mater. Res. 10, p. 243 (1995).Google Scholar
3. Dietrich, R. V., Lithos, 1 p. 20 (1968).Google Scholar
4. Salvi, S. and Williams-Jones, A.E., Amer. Mineral. 80, 1031 (1995).Google Scholar
5. Tikhonenkova, R. P. and Kazakova, M. Ye, Problems in the Geology of Rare Elements, edited by L.N. Ovchinnikov, Akad. Nauk.1977 pp. 272–280.Google Scholar
6. Semenov, E.I., Akad. Nauk SSSR, Inst. Mineral., Geokhim. Kristallokhim. Redk. Elem. pp. 313 (1967).Google Scholar
7. Caruba, R., Ph.D. thesis, University of Nice, Nice, France 324 p.Google Scholar
8. Baussy, G., Caruba, R., Baumer, A.. and Turco, G., Bull. Soc. fr. Minéral. Cristallogr. 97, p. 433 (1974).Google Scholar
9. Ahmed, M. and Mackenzie, W.S., Progress In Experimental Petrology, Fourth Report 1975–8, NERC, pp. 4951 (1978).Google Scholar
10. Currie, K. L. and Zaleski, E., Can. Mineral. 23, p. 577 (1985).Google Scholar
11. Skougstad, M. W., Fishman, M. J., Friedman, L.C., Erdman, D. E. , D. E. Duncan, S. S., Methods for determination of inorganic substances in water and fluvial sediments. Chapter Al, U.S. Geol. Survey., 1979 pp. 495–496.Google Scholar
12. Wolery, T. J., EO3/6. A software package for geochemical modelling of aqueous systems (version 7.2a). LLNL. UCRL-MA- 110662, (1993).Google Scholar
13. Salvi, S. and Williams-Jones, A.E., Geochim. Cosmochim. Acta, 54, p. 2403 (1990).Google Scholar
14. Salvi, S. and Williams-Jones, A. E., Geochim. Cosmochim. Acta (In press).Google Scholar
15. Aja, S. U., Wood, S. A. and Williams-Jones, A. E., Eur. J. Mineral. 4, p. 1251, (1992).Google Scholar
16. Holland, T. J. B., Amer. Mineral. 74, p. 5 (1989).Google Scholar
17. Chermak, J. A. and Rimstidt, J. Donald, Amer. Mineral. 75, p. 1376 (1990).Google Scholar