Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T08:14:18.961Z Has data issue: false hasContentIssue false

Solid-State Alloying in Binary Systems with a Positive Heat of Mixing

Published online by Cambridge University Press:  21 February 2011

E. Ma
Affiliation:
Department of Mechanical Engineering and Center for Advanced Microstructures and Devices (CAMD), Louisiana State University, Baton Rouge, LA 70803, USA
J.-H. He
Affiliation:
Department of Mechanical Engineering and Center for Advanced Microstructures and Devices (CAMD), Louisiana State University, Baton Rouge, LA 70803, USA
P.J. Schilling
Affiliation:
Department of Mechanical Engineering and Center for Advanced Microstructures and Devices (CAMD), Louisiana State University, Baton Rouge, LA 70803, USA
F. Pan
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
B.X. Liu
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
Get access

Abstract

The Extended X-ray Absorption Fine Structure (EXAFS) technique has been employed to monitor the formation of metastable alloys by mechanical alloying in two positive-heat-of-mixing systems, Cu-Fe and Ag-Fe. With its unique atom selectivity and local atomic environment sensitivity, EXAFS provides clear evidence of atomic-level alloying forming bcc (Fe80Cu20) and fee (Fe50Cu50) solid solutions in the Cu-Fe system. In contrast, such alloying appears to be absent in Ag-Fe. The possible availability of a thermodynamic driving force for alloying in certain nanostructured mixtures of immiscible elements is discussed. A preliminary study was performed on the possibility of alloying and amorphization in vacuum-deposited Cu/Ta multilayer films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Yavari, A.R., Desre, P.J. and Benameur, T., Phys. Rev. Lett. 68, 2235 (1992).Google Scholar
2 Eckert, J., Holzer, J.C., Krill III, C.E. and Johnson, W.L., J. Appl. Phys. 73, 2794 (1993).Google Scholar
3 Ma, E., Atzmon, M. and Pinkerton, F.E., J. Appl. Phys. 74, 955 (1993).Google Scholar
4 Drbohlav, O. and Yavari, A.R., Acta. Metall. Mater. 43,1799 (1995).Google Scholar
5 Gente, C., Oehring, M. and Bormann, R., Phys. Rev. B48, 13244 (1993).Google Scholar
6 Bellon, P. and Averback, R.S., Phys. Rev. Lett. 74, 1819 (1995).Google Scholar
7 Koch, C.C., in Mater. Sci. & Technol., ed. Cahn, R. et al. (VCH, Weinheim, 1991), Vol. 15, p. 193.Google Scholar
8 Mizutani, U. and Lee, C.H, Mater. Trans. JIM 36, 210 (1995) and references therein.Google Scholar
9 Veltl, G., Scholz, B., and Kunze, H.-D., Mat. Sci. Eng. A134, 1410 (1991).Google Scholar
10 Gaffet, E., Louison, C., Harmelin, M. and Foudot, F., Mat. Sci. Eng. A134, 1380 (1991).Google Scholar
11 Kuyama, J., Inui, H., Imaoka, S., Nasu, S., Ishihara, K. and Shingu, P.H., J. J. Appl. Phys. 30, L854 (1991).Google Scholar
12 Jiang, J., Gonser, U., Gente, C. and Bormann, R., Appl. Phys. Lett. 63, 1056 (1993).Google Scholar
13 Macri, P., Rose, P., Frattini, R., Enzo, S., Principi, G., Hu, W., and Cowlam, N., J. Appl. Phys. 76, 4061 (1994).Google Scholar
14 Herr, U., Jing, J., Gonser, U. and Gleiter, H., Sol. Stat. Comm. 76, 197 (1990).Google Scholar
15 Klug, H.P. and Alexander, L.E., X-ray Diffraction Procedures. 2nd ed. (John Wiley, NY, 1974), Chap. 7, p. 531.Google Scholar
16 Wong, J., Nixon, W.E. and Mitchell, J.W., J. Appl. Phys. 71, 150 (1992).Google Scholar
17 Nasu, T., Koch, C.C., Edwards, A.M. and Sayers, D.E., J. Non-Cryst. Sol. 150, 491 (1992).Google Scholar
18 Schilling, P., Morikawa, E., Tolentino, H., Tamura, E., Kurtz, R., Cusatis, C., Rev. Sci. Instr. 66, 2214 (1995).Google Scholar
19 Stern, E.A., Newville, M., Ravel, B., Yacoby, Y. and Haskel, D., Physica B, in press.Google Scholar
20 Schilling, P.J., He, J., Cheng, J. and Ma, E., Appl. Phys. Lett, in press.Google Scholar
21 Huang, J.Y., Wu, Y.K., He, A.Q. and Ye, H.Q., Nanostructured Materials, 4, 293 (1994); also 4, 1 (1994).Google Scholar
22 Martin, G., Phy. Rev., B 30, 1424 (1984); E. Ma and M. Atzmon, Mater. Chem. Phys. 39, 249 (1995).Google Scholar
23 Becker, R., Ann. Phys. 32, 128 (1938); J. Gerkema and A.R. Miedema, Surf. Sci. 124, 351 (1981).Google Scholar
24 Tschope, A. and Birringer, R., Acta. Metall. Mater. 41, 2791 (1993).Google Scholar
25 Spaepen, F., Private communication.Google Scholar
26 Fecht, H. J., Hellstern, E., Fu, Z. and Johnson, W. L., Met. Trans. A21, 2333 (1990).Google Scholar
27 Eckert, J., Holzer, J.C., Krill, III, C.E., and Johnson, W.L., J. Mater. Res. 7, 1751 (1992).Google Scholar
28a Massalski, T.B., éd., Binary Alloy Phase Diagrams (ASM, Metals Park, OH, 1990), p.1409; 28b.,p. 36.Google Scholar
29 Shingu, P.H., Ishihara, K.N., Uenishi, K., Kuyama, J., Huang, B. and Nasu, S., in Solid State Powder Processing, edited by Clauer, A.H. and deBarbadillo, J.J. (TMS, Warrendale, 1990), p. 21.Google Scholar
30 Ma, E., He, J.-H. and Schilling, P.J., Phys. Rev. B, submitted.Google Scholar
31 Battezzati, L., Philos. Mag. B 61, 511 (1990); E. Ma and M. Atzmon, J. Alloys and Com. 194, 235 (1993).Google Scholar