Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T08:55:34.419Z Has data issue: false hasContentIssue false

Sol-Gel Synthesis of the Strontium-Copper Oxycarbonate Superconductor Sr2CuO2(CO3)1−x(BO3)x

Published online by Cambridge University Press:  15 February 2011

Audrey J. Babcock
Affiliation:
Department of Chemistry, University of Oregon, Eugene, Oregon 97403
Alexander R. Pico
Affiliation:
Department of Chemistry, University of Oregon, Eugene, Oregon 97403
Catherine J. Page
Affiliation:
Department of Chemistry, University of Oregon, Eugene, Oregon 97403
Get access

Abstract

We have developed an ambient-pressure sol-gel synthetic route to superconducting borate-doped Sr2CuO2(CO3) using polyether alkoxide precursors. In our sol-gel preparation, the starting solutions contain strontium and copper alkoxide complexes in 2-(2-methoxy-ethoxy)ethanol. Boron is incorporated into the solution by using an aqueous boric acid solution for hydrolysis. Dried gels were examined by x-ray diffraction and thermal gravimetric analysis. By experimenting with various firing sequences and atmospheres we have established a successful route for reproducibly preparing relatively pure Sr2CuO2CO3 and boron-doped phases. Final products were characterized by x-ray diffraction, elemental analysis and magnetic susceptibility. Samples of nominal composition Sr2CuO2(CO3)0.85(BO2)0.15 are superconducting with a Tc(onset) of ∼25K. Subsequent treatment at 1100°C and 3 GPa for one hour increased Tc(onset) to ∼35K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Miyazaki, Y., et al. , Physica C 191, p. 434 (1992).Google Scholar
2. Kinoshita, K., Yamada, T., Nature 357, p. 313 (1992).Google Scholar
3. Kinoshita, K., Yamada, T., Jpn. J. Appl. Phys. 31, p. L832 (1992).Google Scholar
4. Armstrong, A. R., Edwards, P. P., J. Solid State Chem. 98, p. 432 (1992).Google Scholar
5. Izumi, F., et al. , Physica C 196, p. 227 (1992).Google Scholar
6. Uehara, M., Nakata, H., Akimitsu, J., Physica C 216, p. 453 (1993).Google Scholar
7. Uehara, M., et al. , Physica C 229, p. 310 (1994).Google Scholar
8. Akimitsu, J., Nakata, H., Uehara, M., J.Supercond. 7, p. 19 (1994).Google Scholar
9. Greaves, C., Al-Mamouri, M., Slater, P., Edwards, P. P., Physica C 235–240, p. 158 (1994).Google Scholar
10. Raveau, B., Michel, B., Mercey, B., Hamet, J. F., Hervieu, M., J. Alloys Compd. 229, p. 134 (1995).Google Scholar
11. Houk, C.S., Page, C. J., Adv. Mater. 8, p. 173 (1996).Google Scholar
12. Houk, G.S., Burgoine, G. A., Page, C. J., Chem. Mater. 7, p. 173 (1995).Google Scholar
13. Houk, C.S., Burgoine, G. A., Page, C. J., Mater. Res. Soc. Symp. Proc. 346, p. 29 (1994).Google Scholar
14. Page, C.J., Houk, C.S., Burgoine, G. A., Mater. Res. Soc. Symp. Proc. 271, p 155 (1992).Google Scholar
15. Schmidt, H., J.Non-Cryst. Solids 100, p. 51 (1988).Google Scholar
16. Mehrotra, R.C., J. Non-Cryst. Solids 100, p. 1 (1988).Google Scholar
17. Reuter, H., Advanced Materials 3, p. 258 (1991).Google Scholar
18. Lee, G. R., Crayston, J. A., Advanced Materials 5, p. 434 (1993).Google Scholar
19. Bonhomme-Coury, L., Lequeux, N., Mussotte, S., Boch, P., Sol-Gel Sci. Tech. 2, p. 371 (1994).Google Scholar