Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-05T10:50:54.063Z Has data issue: false hasContentIssue false

Smoothing Effects of MOCVD Grown GaAs/AlxGa1−xAs Superlattices1

Published online by Cambridge University Press:  21 February 2011

Xian-gang Xu
Affiliation:
Institute of Crystal Materials, Shandong Univ., Jinan, P.B. China, 250100.
Bai-biao Huang
Affiliation:
Institute of Crystal Materials, Shandong Univ., Jinan, P.B. China, 250100.
Shi-wen Liu
Affiliation:
Institute of Crystal Materials, Shandong Univ., Jinan, P.B. China, 250100.
Hong-wen Ren
Affiliation:
Institute of Crystal Materials, Shandong Univ., Jinan, P.B. China, 250100.
Min-hua Jiang
Affiliation:
Institute of Crystal Materials, Shandong Univ., Jinan, P.B. China, 250100.
Get access

Abstract

GaAs/AlxGa1-xAs (x=0.5, 0.6, 1.0) superlattices used as buffer layers in HEMT devices have been grown by Metalorganic Chemical Vapor Deposition (MOCVD) at. atmospheric pressure, and characterized by cross-sectional transmission electron microscopy (XTEM). The initial stage of nucleation on the substrates has been clearly verified by examining the undulations of a 30na GaAs layer sandwiched between the substrate and the superlattice. Both Alo.5Gao.5As/GaAs and AlAs/GaAs superlattices can smooth out interface roughness caused by contaminations and dislocations on the substrate surface. The mechanism of smoothing effect has been discussed in detail.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Work supported by the National Natural Science Foundation of China.

References

REFERENCES

[1] Stringfellow, G.B., Organometallic Vapor-Phase Epitaxy: Theory and Practice, (Academic prese, Boston, 1989), 1.Google Scholar
[2] Weisbuch, C., Semiconductors and Semimetals, edited by Dingle, R., Vol. 24, (Academic press, London, 1987), 1.Google Scholar
[3] Tsang, W.T., Seniconductors and Semimetals, edited by Dingle, R., Vol. 24, (Academic press, London, 1987), 397.Google Scholar
[4] Mimura, T., Hiyamizu, S., Fujii, T., and Nanbu, K., Jpn. J. Appl. Phys., 19 L225, (1980).Google Scholar
[5] Miller, D.A.B., Optics & Photonics News, Feb., 8, (1990)Google Scholar
[6] Packeiser, G., Tews, H. and Zwicknagl, P., J. Crystal Growth, 107, 637, (1991).CrossRefGoogle Scholar
[7] Levine, B.F., Malik, R.J., Walker, J., Choi, K.K., Bethea, C.G., Kleinman, D.A., and Vandberg, J.W., Appl. Phys. Lett., 53, 296, (1988).Google Scholar
[8] Lakner, H., Bollig, B., Kubalek, E., Heuken, M., Heime, K., Scheffer, F., and Guimarâes, F.E.G., J. Crystal Growth, 107, 452, (1991).Google Scholar
[9] Heuken, M., Loreck, L., Ploog, K., Schlapp, H., and Weimann, G., IEEE Trans. Electron. Devices, ED–33, 693, (1986)Google Scholar
[10] Gowers, U.P., Thin Film Growth Techniques for Low-Dimensional Structures, edited by Farrow, R.F.C. et al., (NATO ASI Series B: vol. 163, Plenum press, New York, 1987), 471.Google Scholar
[11] Baibiao, Huang et al., Research & progress of S.E.E (in Chinese), 10, 666, (1990)Google Scholar
[12] Ando, S. and Fukui, T., J. Crystal Growth, 98, 646, (1989).CrossRefGoogle Scholar
[13] Leys, M.R., van Opdorp, C., Viegers, M.P.A., and Talen-van der Mheen, H.J., J. Crystal Growth, 68, 431, (1984).Google Scholar
[14] Tiwen, Fan, Chinese J. semiconductors, 9, 211, (1988).Google Scholar
[15] Kuesters, K.H., Cooean, B.C.De., Shealy, J.R., and Carter, C.B., J. Crystal Growth, 71, 514, (1985).CrossRefGoogle Scholar
[16] Nilson, S., Van Gieson, E., Arent, D.J., Meier, H.P., Walter, W. and Forster, T., Appl. Phys. Lett., 55, 972, (1989).CrossRefGoogle Scholar
[17] Asai, H., J. Crystal Growth, 80, 425, (1987).CrossRefGoogle Scholar
[18] Hersee, S.D., Barbier, E., and Bloudeau, R., J. Crystal Growth, 77, 310, (1986).CrossRefGoogle Scholar