Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T18:58:10.075Z Has data issue: false hasContentIssue false

Small Diameter Dry Etched Via Holes in GaAs

Published online by Cambridge University Press:  22 February 2011

S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
A. Katz
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
B. Tseng
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. R. Lothian
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
T. R. Fullowan
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

Two techniques for fabricating through-wafer via holes in 2-4 mil thick GaAs substrates were examined. In the first, Ni or thick photoresist masks were used for patterning 30 μm diameter vias by ECR-rf dry etching using low pressure (10-20 mTorr), low bias (– 150V) BCI3/C12 discharges. Microwave enhancement of these discharges produced faster etch rates but a greater degree of isotropic material removal at a given pressure. Reducing the process pressure produces extremely anisotropic features with high aspect ratio. The BC13-to-C12 ratio must be kept to ≥5:1 to maintain the anisotropy. A novel laser drilling technique was also examined - in this case a Q-switched beam with high energy density was used to ablate material in each pass of the beam, producing a via in approximately 40 passes. This is a maskless procedure capable of producing any desired via hole pattern, but currently there is no selectivity for ablating GaAs over a front-side metal film.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. D'Asaro, L. A., Butherus, A. D., DiLorenzo, J. B., Inglesias, D. E. and Wemple, S. H., Proc. GaAs and Related Compounds, AIP Conf. Ser. 56 267 (1981).Google Scholar
2. Hipwood, L. G. and Wood, P. N., J. Vac. Sci. Technol. B3 395 (1985).Google Scholar
3. Geissberger, A. E. and Clayton, P. R., J. Vac. Sci. Technol. A3 863 (1985).Google Scholar
4. Hilton, K. P. and Woodward, J., Electron. Lett. 21 962 (1985).Google Scholar
5. Chang, E. Y., Nagarajan, R. M., Kryzak, C. J. and Pande, K. P., IEEE Trans. Semicond. Man. 1 157 (1988).Google Scholar
6. Salimian, S., Cooper, C. B. III and Day, M. E., J. Vac. Sci. Technol. B5 1606 (1987).Google Scholar
7. Kazior, T. E., Patel, B. I. and Guerin, B. J., Proc. 13th State-of-the-Art Program on Compound Semiconductors, ed. Lee, H., Ueda, O., Clechet, P. and Woodall, J. M. (Electrochemical Society, Pennington, NJ 1991), Vol. 91–1 299 (1991).Google Scholar
8. Astell-Burt, P. J., Ditmer, G. A., Kadakia, V. B., Lochran, B. C., Webb, D. R., Proc. Mat. Res. Soc. Symp. 108 273 (1988).Google Scholar
9. Pearton, S. J., Nakano, T. and Gottscho, R. A., J. Appl. Phys. 69 4206.Google Scholar