Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T16:11:28.548Z Has data issue: false hasContentIssue false

Size Effects in BaTiO3 Thin Films

Published online by Cambridge University Press:  15 February 2011

X. M. Lu
Affiliation:
National Lab of Solid State Microstructures, Nanjing University, Nanjing 210093, China, wangYN@njnet.ihep.ac.cn or naiben@bepc2.ihep.ac.cn
J. S. Zhu
Affiliation:
National Lab of Solid State Microstructures, Nanjing University, Nanjing 210093, China, wangYN@njnet.ihep.ac.cn or naiben@bepc2.ihep.ac.cn
P. Li
Affiliation:
National Lab of Solid State Microstructures, Nanjing University, Nanjing 210093, China, wangYN@njnet.ihep.ac.cn or naiben@bepc2.ihep.ac.cn
W. Jiang
Affiliation:
National Lab of Solid State Microstructures, Nanjing University, Nanjing 210093, China, wangYN@njnet.ihep.ac.cn or naiben@bepc2.ihep.ac.cn
X. Liu
Affiliation:
National Lab of Solid State Microstructures, Nanjing University, Nanjing 210093, China, wangYN@njnet.ihep.ac.cn or naiben@bepc2.ihep.ac.cn
Y. N. Wang
Affiliation:
National Lab of Solid State Microstructures, Nanjing University, Nanjing 210093, China, wangYN@njnet.ihep.ac.cn or naiben@bepc2.ihep.ac.cn
Get access

Abstract

The size effects were studied by the measurement of optical transmittance, Raman spectra and mechanical dissipation in BaTiO3 films. The variation of energy gap, Raman peaks, Curie temperature with film thickness and grain size was observed and the possible origin was analyzed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jaccard, A., Kanzig, W. and Peter, M., Helv. Phys. Acta. 26, 521 (1953)Google Scholar
2. Anliker, M., Brugger, H.R. and Kanzig, W., Helv. Phys. Acta. 27, 99 (1954)Google Scholar
3. 1.Batra, P., Wurfel, P. and Silverman, B.D., Phys. Rev. Lett. 30, 384 (1973); Phys. Rev. B8, 3257 (1973)Google Scholar
4. Batra, I.P. and Silverman, B.D., Solid State Commu. 11, 291 (1972)Google Scholar
5. Hadni, A. and Thomas, R., Thin Solid Films 81, 247 (1981); Ferroelectrics 59, 221 (1984)Google Scholar
6. Kanata, I., Yoshikawa, T. and Kubota, K., Solid State Commu. 62, 765 (1987)Google Scholar
7. Surowiak, Z. and Nogas, E., Ferroelectrics 115, 21 (1991)Google Scholar
8. Lu, X.M., Zhu, J.S., Zhang, W.Y., Ma, G.Q. and Wang, Y.N., Thin Solid Films (in press)Google Scholar
9. Callaway, J., Quantum Theory of the Solid State, Academic, New York (1974) p.525 Google Scholar
10. Fujimoto, K., RobaYashi, Y. and Kubota, K., Thin Solid Films 169 (2), 249 (1989)Google Scholar
11. Taguchi, I., Pignolet, A., Wang, L., Proctor, M., Levy, F. and Schmid, P.E., J. Appl. Phys. 73, 394(1993)Google Scholar
12. Fujimoto, K., Kobayashi, Y. and Kubota, K., Thin Solid Films 169 (2), 249 (1989)Google Scholar
13. Lu, X.M., Zhu, J.S., Tian, W., Lu, M. and Wang, Y. N., Ferroelectrics 165, 339 (1995)Google Scholar
14. Desu, S.B., J. Electrochem Soc. 140 (10), 2981 (1993) ; Phys. Stat. Sol. (a) 141, 119 (1994)Google Scholar
15. Sakashita, Y., Segawa, H., Tominaga, K. and Okada, M., J. Appl. Phys. 73 (11), 7857 (1993)Google Scholar