Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-02T16:41:00.006Z Has data issue: false hasContentIssue false

Simulations of Defect and Diffusion Properties in The Interstitial CU-C Solid Solutions

Published online by Cambridge University Press:  10 February 2011

D.E. Ellis
Affiliation:
Dept. of Physics and Astronomy and Materials Research Center, Northwestern University, Evanston IL 60208
K.C. Mundim
Affiliation:
Dept. of Physics and Astronomy and Materials Research Center, Northwestern University, Evanston IL 60208
D. Fuks
Affiliation:
Dept.of Materials Engin., Ben Gurion Univ. of the Negev, POB 653, Beer-Sheva, Israel
S. Dorfman
Affiliation:
Dept. of Physics, Technion, 32000 Haifa, Israel
A. Berner
Affiliation:
Dept. of Materials Enbin., Technion, 32000 Haifa, Israel
Get access

Abstract

HRSEM analyses of copper/graphite interfaces are presented, showing a narrow solid solution zone. Atomistic simulations in the framework of the Generalized Simulated Annealing approach lead to very reasonable relaxed geometries around carbon interstitials and vacancy complexes of a Cu host, and for a Cu/graphite interface. Embedded Cluster Density Functional results indicate a charge transfer of ~1 e to carbon, mostly from the first neighbor shell, in all relaxed environments studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kuniya, K. and Arakawa, H., in Proceedings of the 3rd Japan-US Conference on Composite Materials, Tokyo, 23-26 June 1986. K Kawata, S. Umekawa and A.Kobayashi (Eds.), Japan Soc. for Composite Materials, Tokyo, 1986; S. Dorfman and D. Fuks, Composite Interfaces 3,431(1996) and references therein..Google Scholar
[2] Banerji, E.A., Rohatgi, P.K., and Reif, W., Metall., 38 656 (1984).Google Scholar
[3] Dellanay, F., Froyen, L., and Deruyttere, A., Journ. of Mater. Sci. 22 1 (1987).Google Scholar
[4] Gangopadhyay, U. and Wynblatt, P., Metall. Mater. Trans., 25A, 607 (1994).Google Scholar
[5] Gangopadhyay, U. and Wynblatt, P., Journ. of Mater. Sci., 30 94 (1995).Google Scholar
[6] Hara, S., Nogi, K., and Ogino, K., in Proceedings of Int. Conf. “High-temperature capillarity”, Ed. Eustathopoulos, N. (Inst. of Inorg. Chemistry, Bratislava, 1994), 43.Google Scholar
[7] Kaufman, L. and Bemstein, H., “Computer Calculation of Phase Diagrams”, (Academic Press, New York, 1970); C.Wagner, “Thermodynamics ofAlloys”, (Addison-Wesley, Reading, 1952).Google Scholar
[8] Dorfman, S. and Fuks, D., Composites 27A, 697 (1996).Google Scholar
[9] Mundim, K.C. and Tsallis, C., Int. J. Quant. Chem., 58 373 (1996); M.A. Moret, P.G. Pascutti, P.M. Bisch, and, K.C. Mundim, “Stochastic Molecular Optimization using Generalized Simulated Annealing”. PreprintGoogle Scholar
[10] Pascutti, P.G., Schreier, S., Mundim, K.C., and Bisch, P.M., J. Phys. Chem. 99,14882(1995)Google Scholar
[11] For example see: “Electronic Density Functional Theory of Molecules, Clusters, and Solids”, ed. Ellis, D.E., (Kluwer, Dordrecht, 1995)Google Scholar
[12] Ellis, D.E., Benesh, G.A. and Byrom, E., Phys. Rev. B 16 3308 (1977); Phys. Rev. B 20 1198 (1979); C. Unrigar and D.E. Ellis, Phys. Rev. B21 852 (1980).Google Scholar
[13] Ellis, D.E. and Guo, J., in “Electron Processes at Solid Surfaces”, Eds. Ilisca, E. and Makoshi, K., (World Scientific, Singapore, 1994) p.205.Google Scholar
[14] Ellis, D.E. and Painter, G.S., Phys. Rev. B 2 2887 (1970).Google Scholar
[15] Ellis, D.E., Mundim, K., Dravid, V.P. and Rylander, J.W., in “Computer Aided Design of High-Temperature Materials”, Ed.s Pechenik, A., Kalia, R.K. and Vashishta, P., (Oxford U. Press, to be published); D.E. Ellis, K.C. Mundim, D. Fuks, S. Dorfman, and A. Berner, submitted.Google Scholar