Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-09T16:56:50.292Z Has data issue: false hasContentIssue false

Simulation of Rapid Thermal Processing Equipment and Processes

Published online by Cambridge University Press:  21 February 2011

Kun-Ho Lie
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Tushar P. Merchant
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Klavs F. Jensen
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Get access

Abstract

We present finite element simulations of fluid flow, heat transfer, and chemical reactions in axisymmetric rapid thermal processing (RTP) configurations. A new approach to simulating radiation heat transfer between lamps, substrates, and system walls is described. The method accounts for multiple reflections and readily allows the inclusion of temperature, radiation wavelength, and materials specific emissivity parameters. The influence of system geometry, lamp power profile, substrate and wall emissivity parameters, and process gas flow upon RTP performance characteristics is illustrated through examples. Transient flow and heat transfer simulations are used to identify operating conditions where flow recirculations are avoided. The further use of physically based models in the design and optimization of RTP systems is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Green, M.L., Brasen, D., Luftman, H., and Kannan, V.C., J. Appl. Phys., 65, no. 6, 2558 (1989).CrossRefGoogle Scholar
2. Metha, S. and Hodul, D., Mat. Res. Soc. Symp. Proc., 92,95 (1987).Google Scholar
3. Wilson, S.R., and Gregory, R.B., Mat. Res. Soc. Symp. Proc., 52,181 (1986).Google Scholar
4. Lassig, S.E., Debolske, T.J., and Crowley, J., Mat. Res. Soc. Symp. Proc., 92,103 (1987).Google Scholar
5. General Electric Fused Quartz General Catalog, 7705-7725, (April 1985).Google Scholar
6. Liao, J. C., Crowley, J. L., Kamins, T. I., Mat. Res. Soc. Symp. Proc., 146, 97 (1989).Google Scholar
7. Jensen, K.F., J. Crystal Growth, 98,148 (1989).Google Scholar
8. Fotiadis, D.I., Kieda, S., and Jensen, K.F., J. Crystal Growth, 102,441 (1990).Google Scholar
9. Fotiadis, D.I., Boekholt, M., Jensen, K.F., and Richter, W., J. Crystal Growth, 100, 577 (1990).Google Scholar
10. Kleijn, C.R., J. Electrochem. Soc., 138, no. 7, 2190 (1991).Google Scholar
11. Kleijn, C.R., Meer, Th. H. van der, and Hoogendoorn, C.J., J. Electrochem. Soc., 136, 3423 (1989).CrossRefGoogle Scholar
12. Young, G.L., and McDonald, K. A., IEEE Transactions on Semiconductor Manufacturing, 3, 176 (1990).Google Scholar
13. Chinoy, P.B., Kaminski, D. A., and Ghandhi, S.K., Numerical Heat Transfer, Part A, 19, 85 (1991).Google Scholar
14. Campbell, S. A., Ahn, K.-H., Knutson, K. L., Liu, B. Y.H., and Leighton, J. D., IEEE Transactions on Semiconductor Manufacturing, 4, no. 1, 14 (1991).Google Scholar
15. Chatterjee, S., Trachtenberg, I., and Edgar, T. F., J. Electrochemical Society, 139, no.12, 3682 (Dec. 1992).Google Scholar
16. Kersch, A., Schafer, H., and Weiner, C., IEDM Technical Digest, 883 (1992).Google Scholar
17. Gebhart, B., Heat Transfer, 2nd ed., McGraw-Hill, New York (1971).Google Scholar
18. Bornside, D.E., Kinney, T.A., Brown, R.A., and Kim, G., Intl. J. Numerical Method in Eng., 30,133 (1990).CrossRefGoogle Scholar
19. Kremer, A.M., Experimental Investigations and Finite Element Modeling of Vertical Chemical Vapor Deposition Reactors, chapter 4, MS Thesis, University of Minnesota, Minneapolis, Minnesota (1987).Google Scholar
20. Hood, P., Intl. I. Numerical Method in Eng., 10, 379 (1976).Google Scholar
21. Irons, B.M., Intl. J. Numerical Method in Eng., 2, 5 (1970).Google Scholar
22. Petzold, L., SIAM J. Sci. Stat. Comput., 9, 213 (1982).Google Scholar
23. Howell, J.R., A Catalog of Radiation Configuration Factors, McGraw-Hill, New York (1982).Google Scholar
24. Bornside, D.E. and Brown, R.A., J. Thermophysics and Heat Transfer, 4, no. 3, 414 (1990).CrossRefGoogle Scholar
25. Moffat, H.K. and Jensen, K.F.. J. Electrochem. Soc., 135, 459471 (1988).CrossRefGoogle Scholar
26. Moffat, H.K., Jensen, K.F., and Carr, R.W., J. Phys. Chem., 95 145 (1991); 96, 7683, 7695 (1992).CrossRefGoogle Scholar