Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-17T10:05:09.507Z Has data issue: false hasContentIssue false

Simulation of Galvanostatic Discharge of the LixC6/Liquid Electrolyte/Liy(NiaCobMnc)O2 Cell

Published online by Cambridge University Press:  06 June 2013

Rajeswari Chandrasekaran
Affiliation:
Research and Advanced Engineering, Ford Motor Company, Dearborn, MI, United States.
Yeonkyeong Seong
Affiliation:
Samsung SDI, Yong-in, Kyung-gi, Korea, Republic of.
Chulheung Bae
Affiliation:
Research and Advanced Engineering, Ford Motor Company, Dearborn, MI, United States.
Joosik Jung
Affiliation:
Samsung SDI, Yong-in, Kyung-gi, Korea, Republic of.
Kwangsoo Kim
Affiliation:
Samsung SDI, Yong-in, Kyung-gi, Korea, Republic of.
Kyeongbeom Cheong
Affiliation:
Samsung SDI, Yong-in, Kyung-gi, Korea, Republic of.
Theodore Miller
Affiliation:
Research and Advanced Engineering, Ford Motor Company, Dearborn, MI, United States.
Get access

Abstract

An isothermal, physics-based model was developed in COMSOL multiphysics software to simulate the galvanostatic discharge performance of LixC6/Liquid Electrolyte/ Liy(NiaCobMnc)O2 dual lithium-ion insertion cell at 298 K. Modeling results are compared with experimental data to provide further insight into design and optimization of these cells for advanced electric vehicles.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chandrasekaran, R., PhD Thesis, Georgia Institute of Technology, 2010.Google Scholar
Doyle, Marc, Fuller, Thomas F., Newman, John, J. Electrochem. Soc., 140, 1993, 15261533.CrossRefGoogle Scholar
Fuller, Thomas F., Doyle, Marc and Newman, John, J. Electrochem. Soc., 141(1), 1994, 110.CrossRefGoogle Scholar
Thorat, I.V., Stephenson, D.E., Zacharias, N. A., Zaghib, K., Harb, J.N., Wheeler, D.R., J. Power Sources, 188, 2009, 592600.CrossRefGoogle Scholar
Chandrasekaran, R., Drews, A.R., Shaligram, A., Sakamoto, J., Mater. Res. Soc. Symp. Proc.,Vol. 1440, 2012. DOI: 10.1557/opl.2012.1287.CrossRefGoogle Scholar
Liu, G., Zheng, H., Kim, S., Deng, Y., Minor, A. M., Song, X. and Battaglia, V. S., J. Electrochem. Soc., 155 (12) A887A892 (2008).CrossRefGoogle Scholar
Liu, G., Zheng, H., Simens, A. S., Minor, A. M., Song, X. and Battaglia, V. S., J. Electrochem. Soc., 154 (12) A1129A1134 (2007).CrossRefGoogle Scholar
Arora, P., White, R.E. and Doyle, Marc, J. Electrochem. Soc. 145(10), 1998, 36473667.CrossRefGoogle Scholar
Sikha, G., Popov, B. N., White, R. E., J. Electrochem. Soc., 151(7), 2004, A1104A1114.CrossRefGoogle Scholar
Valøen, L. O. and Reimers, J. N., J. Electrochem. Soc. 152(5), 2005, A882A891.CrossRefGoogle Scholar
Wu Wei Zhang, Shao-Ling, Song, Xiangyun, Shukla, Alpesh K., Liu, Gao, Battaglia, Vincent and Srinivasan, Venkat, J. Electrochem. Soc., 159(4), 2012, A438A444.CrossRefGoogle Scholar
Shaju, K. M., Subba Rao, G. V. and Chowdari, B. V. R., J. Electrochem. Soc. 151(9), 2004, A1324A1332.CrossRefGoogle Scholar
Patel, K. K., Paulsen, J.M., Desilvestro, J., J. Power Sources, 122, 2003, 144152.CrossRefGoogle Scholar