Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-04T02:05:16.868Z Has data issue: false hasContentIssue false

A Silicon-Based Infra-Red Photodetector Exploiting Erbium-Doped Silicon Nanocrystals

Published online by Cambridge University Press:  10 February 2011

Anthony J. Kenyon
Affiliation:
Department of Electronic & Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom.
Sukhvinder S. Bhamber
Affiliation:
Department of Electronic & Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom.
Christopher W. Pitt
Affiliation:
Department of Electronic & Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom.
Get access

Abstract

We have exploited the interaction between erbium ions and silicon nanoclusters to produce a photodetector for use in the spectral region around 1.5 μm. The device consists of an MOS structure in which the oxide layer has been implanted with both erbium and silicon and annealed to produce silicon nanocrystals around 3 nm in diameter. Upon illumination with a 1480 nm laser diode, the well-known interaction between the nanocrystals and the rare-earth ions results in a transfer of excitation from the erbium ion to nearby silicon nanocrystals. The resultant modification of the conductivity of the oxide layer enables a current to flow when a voltage is applied.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kenyon, A.J., Trwoga, P.F., Federighi, M., and Pitt, C.W., J. Phys.: Condens. Matter 6, L319–L324 (1994).Google Scholar
[2] Fujii, M., Yoshida, M., Hayashi, S., and Yamamoto, K., J. Appl. Phys. 84, 4525 (1998).Google Scholar
[3] Franzo, G., Vinciguerra, V., and Priolo, F., Appl. Phys. A 69, 3 (1999).Google Scholar
[4] Kovalev, D., Diener, J., Heckler, H., Polisski, G., Kunzner, N., and Koch, F., Phys. Rev. B 61, 4485 (2000).Google Scholar
[5] Kenyon, A.J., Chryssou, C.E., Pitt, C.W., Shimizu-Iwayama, T., Hole, D.E., Sharma, N., and Humphreys, C.J., J. Appl. Phys. 91, 367 (2002).Google Scholar
[6] Kenyon, A.J., Philos. Trans. R. Soc. London, A 361, 345 (2003).Google Scholar
[7] Han, H.S., Seo, S.Y., and Shin, J.H., Appl. Phys. Lett. 79, 4568 (2001).Google Scholar
[8] Hamelin, N., Kik, P.G., Suyver, J.F., Kikoin, K., Polman, A., Schonecker, A., and Saris, F.W., J. Appl. Phys. 88, 5381 (2000).Google Scholar
[9] Priolo, F., Franzo, G., Coffa, S., and Carnera, A., Phys. Rev. B 57, 4443 (1998).Google Scholar
[10] Kik, P.G., Polman, A., Libertino, S., and Coffa, S., J. Lightwave Technol. 20, 834 (2002).Google Scholar
[11] Ran, G.Z., Chen, Y., Qin, W.C., Fu, J.S., Ma, Z.C., Zong, W.H., Lu, H., Qin, J., and Qin, G.G., J. Appl. Phys. 90, 5835 (2001).Google Scholar
[12] Wang, S., Coffa, S., Carius, R., and Buchal, C., Mater. Sci. Eng., B 81, 102 (2001).Google Scholar
[13] CE, Chryssou, AJ, Kenyon, TS, Iwayama, CW, Pitt, and DE, Hole, Appl. Phys. Lett. 75, 2011 (1999).Google Scholar
[14] Polman, A., Custer, J.S., Zagwijn, P.M., Molenbroek, A.M., and Alkemade, P.F.A., J. Appl. Phys. 81, 150 (1997).Google Scholar