Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-25T05:59:26.932Z Has data issue: false hasContentIssue false

Silicon Nanoclusters In Silica: A Luminescence Study Of Visible Light Emission From A Siliconbased Material

Published online by Cambridge University Press:  10 February 2011

P. F. Trwoga
Affiliation:
Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
A. J. Kenyon
Affiliation:
Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
C. W. Pitt
Affiliation:
Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
Get access

Abstract

Considerable interest has been generated recently in the application of Porous Silicon to the production of light emitting devices, and a number of demonstration structures have been produced. However, the poor stability of the material pose limitations on its usefulness. We report studies of the luminescence properties of a related, but stable material: silicon-rich silica. This material consists of silicon clusters embedded in a host matrix of silica, and as such is considerably more robust than porous silicon.

We have produced a number of samples of silicon-rich silica thin films by Plasma Enhanced Chemical Vapour Deposition on to doped silicon substrates. We report photoluminescence studies that investigate the nature of the radiative process, and show evidence of two separate luminescence mechanisms: defect luminescence and exciton confinement in nanoscale silicon clusters. Preliminary electroluminescence from silicon-rich silica fabricated by Plasma Enhanced Chemical Vapour Deposition will also be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Canham, L.T., Appl. Phys. Lett. 57, p10 46 (1990).Google Scholar
[2] Vial, J.C., Billat, S., Bsiesy, A., Fishman, G., Gaspard, F., Herino, R., Ligeon, M., Madeore, F., Mihalcescu, I., Muller, F. and Romestain, R., Physica B. 185, p593 (1993).Google Scholar
[3] Loni, A., Simmons, A. J., Cox, T. I., Calcott, P. D. J., Canham, L.T., Electron. Lett. 31, p1288 (1995).Google Scholar
[4] Bsiesy, A., Vial, J.C., Gaspard, F., Herino, R., Ligeon, M., Muller, F., Romestain, R.. Semiconductor-Silicon 1994 Ed. Huff, H.R., Bergholz, W., Sumino, K., p475 (1994)Google Scholar
[5] Lannoo, M., Delerue, C., Allan, G. and Martin, E. (Mater. Res. Soc. Proc. 358, Boston, MA 1994) p13–p24Google Scholar
[6] Delley, B. and Steigmeier, E.F., Appl. Phys. Lett. 67, p2370 (1995)Google Scholar
[7] Derlet, P.M., Choy, T.C. and Stoneham, A.M., J. Phys. Condens. Matter. 7, p2507 (1995)Google Scholar
[8] Penczek, J., Knoesen, A., Lee, H.W.H. and Smith, R.L. (Mater. Res. Soc. Proc.358, Boston, MA 1994) p641 Google Scholar
[9] Loni, A., Simons, A.J., Cox, T.I., Calcott, P.D.J. and Canham, L.T., Elect. Lett. 31, p1288 (1995)Google Scholar
[10] Lang, W., Steiner, P., Kozlowski, F. and Sandmeier, H., J. Luminesc. 57, p 169 (1993)Google Scholar
[11] Ito, T. and Hiraki, A., J. Luminesc. 57, p331 (1993)Google Scholar
[12] Chang, I.M., Pan, S.C. and Chen, Y.F., Phys. Rev. B. 48, p8747 (1993)Google Scholar
[13] DiMaria, D.J., Kirtley, J.R., Pakulis, E.J., Dong, D.W., Kuan, T.S., Pesavento, F.L., Theis, T.N., Cutro, J.A. and Brorson, S.D., J. Appl. Phys. 56, p401 (1984)Google Scholar
[14] Komoda, T., Kelly, J.P., Nejim, A., Homewood, K.P., Hemment, P.L.F. and Scaly, B.J., Mat. Res. Symp. Proc. 358, p163 (1995)Google Scholar
[15] Shimizu-Iwayama, T., Fujita, K., Nakao, S., Saitoh, K., Fujita, T. and Itoh, N., J. Appi. Phys. 75, p7779 (1994)Google Scholar
[16] Tompa, G. S., Morton, D.C., Sywe, B. S., Lu, Y., Forsythe, E. W., Ott, J. A., Smith, D., Khurgin, J., and Khan, B.A, (Mater. Res. Soc. Proc.3, Boston, MA 1994) p701p706 Google Scholar
[17] Qin, G. G., Li, A. P., Zhang, B. R., and Li, B. C., J. Appl. Phys. 78 (3), p2006, (1995)Google Scholar
[18] Veksler, M. I., 1. Grekhov, V., Solv'ev, S.A., Tkachenko, A. G., and Shulekin, A. F., Tech. Phys. Lett. 21 (7), p530, (1995)Google Scholar
[19] Kenyon, A.J., Trwoga, P.F., Pitt, C. and Rehm, G., J. Appl. Phys. in press.Google Scholar
[20] Fischer, T., Muschik, T., Schwarz, R., Kovalev, D. and Koch, F. (Mater. Res. Soc. Proc.358, Boston, MA 1994), p851–p856Google Scholar
[21] Kalceff, M.A.Stevens and Phillips, M.R., Phys. Rev. B, 52, p3122, (1995)Google Scholar
[22] Munekuni, S., Yamanaka, T., Shimogaichi, Y., Tohmon, R., Ohki, Y., Nagaswawa, K. and Hama, Y., J. Appl. Phys. 68, p1212 (1990)Google Scholar
[23] Koyama, H., J. Appl. Phys. 51, p2228 (1980)Google Scholar
[24] Kenyon, A.J., Trwoga, P.F., Federighi, M. and Pitt, C.W., J. Phys. Condens. Matter. 6, p319, (1994)Google Scholar
[25] Kenyon, A.J., Trwoga, P.F., Federighi, M. and Pitt, C.W. (Mater. Res. Soc. Proc. 358, Boston, MA 1994) p117p 122 Google Scholar
[26] Shin, J.H., Serna, R., van den Hoven, G.N., Polman, A., van Sark, W.G.J.H.M. and Vrendenberg, A.M., Appl. Phys. Lett. 68, p997, (1996)Google Scholar