Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-18T04:10:25.819Z Has data issue: false hasContentIssue false

Sensing Properties of Nanostructured Sm1-xBaxCoO3 (x = 0, 0.1) obtained by Solution Method

Published online by Cambridge University Press:  15 February 2011

Carlos R. Michel
Affiliation:
Departamento de Física, CUCEI, Universidad de Guadalajara, Blvd. M. García Barragán 1421, Guadalajara, Jalisco 44430, México.
Emilio Delgado
Affiliation:
Departamento de Física, CUCEI, Universidad de Guadalajara, Blvd. M. García Barragán 1421, Guadalajara, Jalisco 44430, México.
Israel Ceja
Affiliation:
Departamento de Física, CUCEI, Universidad de Guadalajara, Blvd. M. García Barragán 1421, Guadalajara, Jalisco 44430, México.
Get access

Abstract

Some cobaltites with perovskite-type structure exhibit outstanding transport properties and high chemical activity, which make these materials suitable for applications in areas of gas sensors, heterogeneous catalysis, gas separation membranes and cathodes for solid oxide fuel cells. In this work, polycrystalline samples of Sm1-xBaxCoO3 (x = 0, 0.1) were prepared by an aqueous solution method using the corresponding nitrates. X-ray diffraction patterns of calcined samples showed that single-phase SmCoO3 was obtained at 900°C, whereas Sm0.9Ba0.1CoO3 was formed at 700°C. Electron microscopy images revealed that micron-sized particles were obtained for SmCoO3, whereas a nanostructured and nanoporous material wasobserved for Sm0.9Ba0.1CoO3. Electrical measurements made on thick films of the oxides revealed a semiconductor behavior in both phases, however Sm0.9Ba0.1CoO3 samples showed a larger conductivity compared with SmCoO3; dynamic response of resistance experiments made in air and CO2 revealed that Sm0.9Ba0.1CoO3 is selective to CO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Huang, K. and Goodenough, J.B., J. Electrochem. Soc. 148, E203 (2001).Google Scholar
2. Kammer-Hansen, K., Skou, E.M. and Christensen, H., J. Electrochem. Soc. 147, 2007 (2000).Google Scholar
3. Post, M.L., Tunney, J.J., Yang, D., Du, X. and Singleton, D.L., Sens. Actuators B. 59, 190 (1999).Google Scholar
4. Miura, N., Murae, H., Kusaba, H., Tamaki, J., Sakai, G. and Yamazoe, N., J. Electrochem. Soc. 148, 2185(1999).Google Scholar
5. Dutta, A., Ishihara, T., Nishiguchi, H. and Takita, Y., J. Electrochem. Soc. 151, H122 (2004).Google Scholar
6. Grilli, M.L., Bartolomeo, E. Di and Traversa, E., J. Electrochem. Soc. 148, H98 (2001).Google Scholar
7. Tunney, J.J., Post, M.L., Du, X. and Yang, D., J. Electrochem. Soc. 149, H113 (2002).Google Scholar
8. Lee, H.Y., Jang, J.H. and Oh, S.M., J. Electrochem. Soc. 146, 1707 (1999).Google Scholar
9. Michel, C.R., Gago, A.S., Guzmàn-Colín, H., López-Mena, E.R. and Lardizàbal, D., Mater. Res. Bull. 39 (14-15), 2295 (2004).Google Scholar
10. Kirchenerova, J. and Hibbert, D.B., Mat. Res. Bull. 25, 585592 (1990).Google Scholar
11. Sunstrom, J.E., Ramanujachary, K.V., Greenblatt, M. and Croft, M.J., Solid State Chem. 139, 388397 (1998).Google Scholar
12. Moseley, P.T., Stoneham, A.M. and Williams, D.E., “Oxide Semiconductors: Patterns of Gas Response Behaviour According to Material Type”, Techniques and Mechanisms in Gas Sensing, ed. Moseley, P.T., Norris, J. and Williams, D.E. (Adam Hilger, 1991) pp. 108138.Google Scholar