Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-08-01T08:42:31.486Z Has data issue: false hasContentIssue false

Self-Energy corrections to DFT-LDA Gaps of Realistic Carbon Nanotubes

Published online by Cambridge University Press:  15 March 2011

Guido Satta
Affiliation:
INFM and Dipartimento di Fisica, Università di Cagliari, I-09042 Cagliari, Italy
Giancarlo Cappellini
Affiliation:
INFM and Dipartimento di Fisica, Università di Cagliari, I-09042 Cagliari, Italy
Francesco Casula
Affiliation:
INFM and Dipartimento di Fisica, Università di Cagliari, I-09042 Cagliari, Italy
Get access

Abstract

Since their discovery carbon nanotubes have attracted much interest for their peculiar electronic properties which go from metalic to semiconducting behaviour, depending both on diameter and chirality. The exact vaue of their band gap is obviously a crucial point to be addressed because it enters in the nanotube application as microelectronic devices. By making use of an efficient GW scheme, previousy tested on bulk systems, as well as of a model screening function, we obtained for the first time excitation energies and band-gap vaues for carbon nanotubes. Results for (6,0) and (7,0) will be presented and discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iijma, S., Nature 354, 56 (1991)Google Scholar
2. Saito, R., Dresselhaus, G., and Dresselhaus, M.S., Physical Properties of Carbon Nanotubes (Imp. Coll. Press, London 1996); M.S. Dresselhaus, G 2E Dresselhaus, and P.C. Ecklund, Science of Fullerences and Carbon n Nanotubes (Academic Press, San Diego 1996)Google Scholar
3. Hamada, N., Sawada, S., and Oshiyama, A., Phys.Rev. Lett. 68, 1579 (1992))); please note that in this reference, because of another choice of graphite lattice vectors, nanotubes are differently labelled: eg (2n,n) stays for armchair nanotubes.Google Scholar
4. Saito, R., Fujita, M., Dresselhaus, G., and Dresselhaus, M.S., Appl. Phys. Lett. 60, 2204 (1992); R. Saito, M. Fujita, G. Dresselhaus, and M.S. Dresselhaus, Phys.Rev. B46, 1804 (1992)Google Scholar
5. Mintmire, J.W., Dunlap, B.I., and White, C.T., Phys.Rev.Lett. 68, 631 (1992)Google Scholar
6. Casula, F., Cappellini, G., and Satta, G., Ann SNS, in press (2001)Google Scholar
7. Yang, J., Kelin, W., Casula, F., Mula, G., Phys. Rev. B 47, 4025 (1993)Google Scholar
8. Yang, J., Toigo, F., and Kelin, W., Phys. Rev. B 50, 79155 (1994), and references thereinGoogle Scholar
9. Porcu, M., Satta, G., Casula, F., Mula, G., Mat. Res. Symp. Proc. 491, 149 (1998)Google Scholar
10. Jones, R.O. and Gunnarson, O., Rev. Mod. Phys. 61, 689 (1989)Google Scholar
11. Hybertsen, M.S. and Louie, S.G., Phys. Rev.Lett. 55, 1418 (1985); Phys.Rev. B 34, 5390 (1986)Google Scholar
12. Godby, R.W., Schlüter, M., Sham, L.J., Phys. Rev. 37, 10159 (1988)Google Scholar
13. Sham, L.J., Schlüter, M., Phys. Rev. B 32, 3883 (1985)Google Scholar
14. Hedin, L., Phys. Rev. 139, A796 (1963)Google Scholar
15. Onida, G., Reining, L., Godby, R.W., Sole, R. Del, Andreoni, W., Phys. Rev. Lett. 75, 818 (1995)Google Scholar
16. , Troullier and Martins, J.L., Phys. Rev. B 43, 1993 (1991)Google Scholar
17. Bechstedt, F., Sole, R. Del, Cappellini, G. and Reining, L., Solid State Comm. 84, 765 (1995)Google Scholar
18. Wenzien, B., Cappellini, G., Bechstedt, F., Phys. Rev. B 51, 4397 (1995)Google Scholar
19. Cappellini, G., Bouette-Russo, S., Amadon, B., Noguera, C., Finocchi, F., Journa of Phys.: Cond. Matter 12, 3671 (2000)Google Scholar
20. Blase, X., Benedict, L. X., Shirley, E. L., Louie, S.G., Phys. Rev.Lett. 72, 1878 (1994)Google Scholar
21. Lin, M. F., Shung, Kenneh W.-K., Phys. Rev. B 50, 17744 (1994)Google Scholar
22. Qin, L.C., Zhao, X., Hirahara, K., Miyamoto, Y., Ando, Y., and Iijma, S., Nature 408, 50 (2000)Google Scholar
23. Wang, N., Tang, Z.K., Li, G.D., and Chen, J.S., Nature 408, 50 (2000)Google Scholar