Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-04T12:40:10.107Z Has data issue: false hasContentIssue false

Self-Diffusion in Intrinsic and Extrinsic Silicon Using Isotopically Pure 30Silicon Layer

Published online by Cambridge University Press:  21 March 2011

Yukio Nakabayashi
Affiliation:
Keio Univ., Dept. of Electronics and Electrical Engineering, Yokohama, JAPAN
Hirman I. Osman
Affiliation:
Keio Univ., Dept. of Electronics and Electrical Engineering, Yokohama, JAPAN
Toru Segawa
Affiliation:
Keio Univ., Dept. of Electronics and Electrical Engineering, Yokohama, JAPAN
Kazunari Toyonaga
Affiliation:
Keio Univ., Dept. of Electronics and Electrical Engineering, Yokohama, JAPAN
Satoru Matsumoto
Affiliation:
Keio Univ., Dept. of Electronics and Electrical Engineering, Yokohama, JAPAN
Junichi Murota
Affiliation:
Tohoku Univ. Res. Inst. of Electrical Communication, Sendai, JAPAN
Kazumi Wada
Affiliation:
Massachusetts Institute of Technology, Dept. of MS&E, Cambridge
Takao Abe
Affiliation:
Sin-Etsu Handootai, Isobe R&D Center, Gunma, JAPAN
Get access

Abstract

Silicon self–diffusion coefficients were measured in intrinsic and extrinsic silicon from870 to 1070°C using isotopically pure 30Si layer. 30Si diffusion profiles are determined by secondary ion mass spectrometry. The temperature dependence of intrinsic diffusion coefficient in bulk Si isobtained. Comparing it in heavily As-doped or B-doped Si, it is found that Si self-diffusion is entirely mediated by interstitialcy mechanism at lower temperatures below 870°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mayer, H. J., Mehrer, H. and Maier, K., Radiation Effects in Semiconductors 1976, (Institute of Physics, London, 1977) Con. Ser. 31, p. 186.Google Scholar
2. Kalinowski, L. and Seguin, R., Appl. Phys. Lett. 35, 211 (1979).Google Scholar
3. Hirvonen, J. and Anttila, A., Appl. Phys. Lett. 35, 703 (1979).Google Scholar
4. Demond, F. J., Kalbitzer, S., Mannsperger, H. and Damjantschitsch, H., Phys. Lett. 93A, 503 (1983).Google Scholar
5. Bracht, H., Haller, E. E. and Clark-Phelps, R., Phys. Rev. Lett. 81, 393 (1998).Google Scholar
6. Seeger, A. and Chik, K. P., Phys. Status Solidi 29, 455 (1968).Google Scholar
7. Frank, W., Gösele, U., Mehrer, H. and Seeger, A., in Diffusion in Crystalline Solids, edited by Murch, G. E. and Nowick, A. S. (Academic, New York, 1984).Google Scholar
8. Ural, A., Griffin, P. B. and Plummer, J. D., Appl. Phys. Lett. 73, 1706 (1998).Google Scholar
9. Nakabayashi, Y., Segawa, T., Osman, Hirman I., Saito, K., Matsumoto, S., Murota, J., Wada, K. and Abe, T., Jpn. J. Appl. Phys. 39, 1133 (2000).Google Scholar
10. Levinshtein, M. E. and Rumyantsev, S. L., Handbook Series on Semiconductor Parameters, edited by Levinshtein, M.., Rumyantsev, S. and Shur, M. (World Scientific Inc., Singapore, 1996), Vol. 1, Chap. 1, p. 1.Google Scholar
11. Fairfield, J. M. and Masters, B. J., J. Appl. Phys. 38, 3148 (1967).Google Scholar