Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-18T12:29:47.368Z Has data issue: false hasContentIssue false

A Self-Aligned Silicide Process Utilizing Ion Implants for Reduced Silicon Consumption and Control of the Silicide Formation Temperature

Published online by Cambridge University Press:  01 February 2011

G. M. Cohen
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
C. Cabral Jr
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
C. Lavoie
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
P. M. Solomon
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
K.W. Guarini
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
K.K. Chan
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
R.A. Roy
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

We propose a modified self-aligned silicide (salicide) process that uses Ge implantation and a silicon cap to reduce the silicon substrate consumption by 75% as compared with a conventional salicide process. We have used Ge implants to increase the cobalt disilicide formation temperature. This forces the cobalt to react primarily with a deposited silicon cap, thus minimizing consumption from the silicon substrate. We expect this process to be useful for making silicide on shallow junctions and thin SOI films, where silicon consumption is constrained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wong, H.-S. P., Frank, D.J., and Solomon, P.M., International Electron Device Meeting (IEDM), p. 407 (1998).Google Scholar
2. Wolf, S., in Silicon Processing for the VLSI Era, Vol. 3, (Lattice Press, Sunset Beach, CA, 1995), p. 208.Google Scholar
3. Su, Lisa T., Sherony, M.J., Hu, H., Chung, J.E., Antoniadis, D. A., Electron Dev. Lett., 15(9), 363 (1994).Google Scholar
4. Cohen, G.M., Cabral, C. Jr, Lavoie, C., Solomon, P. M., Guarini, K.W., Chan, K.K., and Roy, R.A. in Material Issues in Novel Si-Based Technology, edited by En, W., Jones, E. C., Sturm, J. C., Tiwari, S., Hirose, M., Chan, M. (Mater. Res. Soc. Proc. 686, Boston, MA, 2001).Google Scholar
5. Donaton, R. A., Maex, K., Vantomme, A., Langouche, G., Amour, A. St., and Sturm, J. C., Appl. Phys. Lett., 70 (10), 1266 (1997).Google Scholar
6. Lavoie, C., Cabral, C. Jr, d'Heurle, F. M., Jordan-Sweet, J. L. and Harper, J. M. E., J. Electron. Mater., in press.Google Scholar