Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-21T13:48:23.916Z Has data issue: false hasContentIssue false

Self Assembled Iron Nanowires: Morphology, Electrical and Magnetic Properties

Published online by Cambridge University Press:  01 February 2011

T.P. Huelser
Affiliation:
Institute of physics, University Duisburg-Essen, 47048 Duisburg
H. Wiggers
Affiliation:
Dept. of mechanical engineering, Institute of combustion and gas dynamics, University Duisburg-Essen, 47048 Duisburg
J. Knipping
Affiliation:
Dept. of mechanical engineering, Institute of combustion and gas dynamics, University Duisburg-Essen, 47048 Duisburg
P. Roth
Affiliation:
Dept. of mechanical engineering, Institute of combustion and gas dynamics, University Duisburg-Essen, 47048 Duisburg
A. Lorke
Affiliation:
Institute of physics, University Duisburg-Essen, 47048 Duisburg
Get access

Abstract

We report on the self-assembled formation of iron nanowires from iron nanoparticles. Nanosized iron particles with a diameter of about 35 nm are synthesized by thermal decomposition of iron pentacarbonyl Fe(CO)5 in a hot wall reactor. This particle size is chosen to produce single domain ferromagnetic particles. As a result, the particles are attracted by magnetic forces, leading to iron nanowires of up to 300 μm in length. HRTEM and EELS investigations give detailed morphological, structural and chemical information. They reveal a big metallic iron core surrounded by an iron oxide shell with a thickness of 3-4 nm, originating from self limiting surface oxidation under ambient conditions. For electrical characterization, single iron wires are thermophoretically sampled on interdigital contacts. Impedance spectroscopy on single nanowires indicates both, capacitive and ohmic contributions to the overall conductivity. Magnetic properties are investigated with SQUID magnetometry. Magnetization measurements reveal a saturation magnetization of 160 emu/g at 5 K, which is more than 70% of the iron bulk value.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zhang, W.-X., J. Nanoparticle Res. 5, 323, 2003.Google Scholar
2. Suslick, K.S., Fang, M. and Hyeon, T., J. Am. Chem. Soc. 118, 11960, 1996.Google Scholar
3. Chatterjee, J., Haik, Y. and Chen, C.-J., J. Magn. Magn. Mat. 257, 113, 2003.Google Scholar
4. Bødker, F., Mørup, S. and Linderoth, S., Phys. Rev. Let. 72, 282, 1994.Google Scholar
5. Shafranovsky, E.A. and Petrov, Yu.I.; J. Nanoparticle Res. 6, 71, 2004.Google Scholar
6. Knipping, J., Wiggers, H., Kock, B.F., Huelser, T., Rellinghaus, B., and Roth, P., Nanotechnology 15, 1665, 2004.Google Scholar
7. Bi, X.X., Ganguly, B., Huffman, G.P., Huggins, F.E., Endo, M. and Eklund, P.C., J. Mater. Res. 8, 1666 (1993).Google Scholar
8. Zachariah, M.R., Aquino, M.I., Shull, R.D. and Steel, E.B., Nanostructured Mat. 5, 383, 1995.Google Scholar
9. Kalyanaraman, R., Yoo, S., Krupashankara, M.S., Sudarshan, T.S. and Dowding, R.J., Nanostruc. Mat. 10, 1379, 1998.Google Scholar
10. Hyeon, T., Lee, S.S., Park, J., Chung, Y. and Na, H.B., J. Am. Chem. Soc. 123, 12798, 2001.Google Scholar
11. Jordan, A., Scholtz, R., Wust, P., Fähling, H. and Felix, R., J. Mag. Mag. Mat. 201, 413, 1999.Google Scholar
12. Hucht, A., Buschmann, S. and Entel, P., unpublished.Google Scholar
13. Huber, D.L., Venturini, E.L., Martin, J.E., Provenico, P.P. and Patel, R.J., J. Mag.Mag.Mat. 278, 311, 2004.Google Scholar
14. Kuhn, L.T., Bojesen, A., Timmermann, L., Nielsen, M.M. and Mørup, S.; J. Phys.: Condens. Matter 14, 13551, 2002.Google Scholar
15. Cardona, M. and Ley, L., Photoemission in solids, (Springer, 1978).Google Scholar
16. Fuggle, J.C. and Martensson, N., J. Electr. Spectrosc. Relat. Phenom 21, 275, 1980.Google Scholar
17. Krivanek, O.L. and Ahn, C.C., Gatan EELS Atlas.Google Scholar
18. Ashcroft, N.W. and Mermin, N.D., Solid State Phyics, Saunders College Publishing, 1976.Google Scholar
19. Cullity, B.D., Introduction to magetic materials, (Addison-Westley 1972).Google Scholar
20. Gangopadhyay, S., Hadjipanayis, G.C., Dale, B., Sorensen, C.M., Klabunde, K.J., Papaefthymiou, V. and Kostikas, A., Phys. Rev. B 45, 9778, 1992.Google Scholar
21. Stoner, E.C. and Wohlfarth, E.P., Philos. Trans. R. Soc. London, Ser. A 240, 599, 1948.Google Scholar