Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T12:32:45.655Z Has data issue: false hasContentIssue false

Selective Titanium Silicide for Industrial Applications

Published online by Cambridge University Press:  15 February 2011

D. Maury
Affiliation:
FRANCE TELECOM - CNET Grenoble - BP 98 - 38243 Meylan - FRANCE
J. L. Regolini
Affiliation:
FRANCE TELECOM - CNET Grenoble - BP 98 - 38243 Meylan - FRANCE
P. Gayet
Affiliation:
Centre Commun CNET SGS-THOMSON - BP 16 - 38921 Crolles - FRANCE
Get access

Abstract

The possibilities of using TiSi2 for contacts and interconnects in 0.25 μm and below design rule ICs are at present being investigated using the standard solid phase reaction (salicide) technique. Some problems still remain, such as phase transformation or dewettability over narrow lines. Over the last few years we have developed a TiSi2 selective CVD technique which is being used for 200 mm wafers in an industrial integrated cluster reactor. The system consists of two reaction chambers: one for Si epitaxy (and related alloys) and the other for TiSi2 deposition. The process sequence involves three main steps: (i) a wet chemical wafer cleaning, (ii) a selective silicon epitaxy for elevated source/drains to obtain minimum substrate consumption and (iii) the deposition of TiSi2 using the H2/SiH4 (or DCS)/TiCl4 gas system in the 650–750°C temperature range. The whole process time per wafer is shorter than 4 min. Selectivity, stoichiometric composition and resistivity of around 16 μmΩcm are obtained. The growth rate, uniformity, grain size and doping effects have been studied on single, polycrystalline, doped and undoped silicon. Device wafers have been used to compare the two processes, standard and CVD, obtaining electrical results such as lower series resistances, and a linewidth independent sheet resistance of down to 0.20 μm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Davari, B., Chang, Wen-Hsing, Petrillo, K. E., Wong, C. Y., Moy, D., Taur, Y., Wordeman, M. R., Sun, J. Y. Chen, Hsu, C. H. and Polcari, M. R., IEEE Trans. El.Dev. 39,967 (1992)Google Scholar
2. Horiuchi, T., Wakabayashi, H., Ishigami, T., Nakamura, H., Mogami, T., Kunio, T. and Okumura, K., Symp. VLSI Tech. Dig., 121 (1994)Google Scholar
3. Weldon, K., Dory, T., Jan, C.-H., Landau, B., Stivers, A. and Bohr, M., The Electrochem. Soc., Extended Abst. Vol.94–2, 756 (1994)Google Scholar
4. Mogami, T., Wakabayashi, H., Saito, Y., Matsuki, T., Tatsumi, T. and Kunio, T., IEDM Tehc. Digest, 687 (1994)Google Scholar
5. Goto, K., Yamazaki, T., Fushida, A., Inagaki, S. and Yagi, H., VLSI Tech. Dig., 119 (1994)Google Scholar
6. Maex, K., Mat. Sci. & Engineering, R11 (2,3) 1993Google Scholar
7. Boutville, A., Royer, A. and Remy, J. C., J. Electrochem. Soc. 134, 2080 (1987)Google Scholar
8. Madar, R., Mastromatteo, E., Vahlas, C., Bernard, C., Palleau, J. and Torres, J., MRS Extended Abstracts EA–18, 71 (1988)Google Scholar
9. Ilderem, V. and Reif, R., J. Electrochem. Soc. 135, 2590 (1988)Google Scholar
10. Rosler, R. S. and Engle, G. M., L. Vac. Sci. Technol. B2, 733 (1984)Google Scholar
11. Kemper, M. J. H., Koo, S. W. and Huizinga, F., Electrochem. Soc. Ext. Abst. 84, 533 (1984)Google Scholar
12. Reynolds, G. J., IIICooper, C. B. and Gaczi, P. J., J. Appl. Phys. 65, 3212 (1989)Google Scholar
13. Saito, K., Amazawa, T. and Arita, Y., Jpn. J. Appl. Phys. 29, L185 (1990)Google Scholar
14. Regolini, J. L., Bensahel, D., Bomchil, G. and Mercier, J., Appl. Surf. Sci. 38, 408 (1989)Google Scholar
15. Gouy-Pailler, P., Haond, M., Mathiot, D., Gauneau, M., Perio, A. and Regolini, J. L., Appl. Surf. Sci. 73, 25 (1993)Google Scholar
16. Xing, G. C. and Öztük, M. C., Conf. Proceed. ULSI-VIII, 309 (1993)Google Scholar
17. Mastromatteo, E., Regolini, J. L., D'Anterroches, C., Dutartre, D., Bensahel, D., Mercier, J., Bernard, C. and Madar, R., Conf. Proceed. VLSI-VI, 1991 Mat. Res. Soc., 209Google Scholar
18. Mercier, J., Regolini, J. L. and Bensahel, D., J. Elect. Mat. 19, 253 (1990)Google Scholar
19. Mendicino, M. A., Southwell, R. P. and Seebauer, E. G., Thin Solid Films, 253, 473 (1994)Google Scholar
20. Southwell, R. P. and Seebauer, E. G., J. Vac. Sci. Technol. A 13, 221 (1995)Google Scholar
21. Saito, K., Higashi, Y., Amazawa, T. and Arita, Y., J. Electrochem. Soc. 141, 1879 (1994)Google Scholar
22. Regolini, J. L., Margail, J.,, Morin, C. and Gouy-Pailler, P., MRS Symp. Proc. Vol. 342, 249 (1994)Google Scholar
23. Kern, W. and Puotinen, D. A., RCA Rev., 31, 187 (1970)Google Scholar
24. Ishitani, A., Endo, N. and Tsuya, H., Jpn. J. Appl. Phys. 23, L391 (1984)Google Scholar
25. Regolini, J. L., Bensahel, D., Scheid, E. and Mercier, J., Appl. Phys. Lett. 54, 658 (1989)Google Scholar
26. Sedgwick, T. O., Agnello, P. D., Berkenblit, M. and Kuan, T. S., J. Electrochem. Soc. 138, 3042 (1991)Google Scholar
27. Regolini, J. L., Mastromatteo, E., Gauneau, M., Mercier, J., Dutartre, D., Bomchil, G., Bernard, C., Madar, R. and Bensahel, D., Appl. Surf. Sci., 53, 18 (1991)Google Scholar
28. Ganin, E., Wind, S., Ronsheim, P., Yapsir, A., Barmak, K., Bucchignano, J. and Assenza, R., Mat. Res. Soc. Symp. Proc. Vol.303, 109 (1993)Google Scholar
29. Roy, R. A., Clevenger, L. A., Cabral, C., Jr., Saenger, K. L., Bauer, S., Jordan-Sweet, J., Bucchignano, J. and Stephenson, G. B., Appl. Phys. Lett. 66, 1732 (1995)Google Scholar
30.- Ada-Hanifi, M., Chantre, A., Levy, D., Gonchond, J. P., Delpch, Ph. and Nouailhat, A., Appl. Phys. Lett., 58, 1280 (1991)Google Scholar