Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-18T10:24:57.840Z Has data issue: false hasContentIssue false

Segregation and Crystallization Phenomena in Germanium

Published online by Cambridge University Press:  15 February 2011

G. J. Clark
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598 USA
A. G. Cullis
Affiliation:
Royal Signals and Radar Establishment, St. Andrews Road, Malvern, England
D. C. Jacobson
Affiliation:
Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974 USA
J. M. Poate
Affiliation:
Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974 USA
Michael O. Thompson
Affiliation:
Department of Materials Science, Cornell University, Ithaca, NY 14853
Get access

Abstract

While many studies have been made of liquid phase epitaxy impurity trapping and segregation in Si little is known about the equivalent processes in Ge. In this paper we have laser annealed Ge <100> and <111> crystals implanted, at liquid nitrogen temperature, with 200 keV 210Bi ions to doses of 2 × 1015 and 1016 ions cm−2. The samples were annealed with Q-switched ruby lasers and an XeCl excimer laser. We have observed 1) velocity and orientation dependence of the Bi segregation coefficient 2) interface instability and cell formation resulting from constitutional supercooling and 3) amorphization and defect production at high velocities. The phenomena are shown to be analogous to those seen in Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Poate, J. M. in “Laser and Electron Beam Interactions with Solids p. 121, ed. Appleton, B. R. and Celler, G. K., North Holland, New York (1981).Google Scholar
2.Cullis, A. G., Webber, H. C., Chew, N. G., Poate, J. M. and Baeri, P., Phys. Rev. Lett. 49, 219 (1982).Google Scholar
3.Appleton, B. R., Holland, O. W., Narayan, J., Schow III, O. E., Williams, J. S., Short, K. T. and Lawson, E., Appl. Phys. Lett. (1982).Google Scholar
4.Baeri, P. and Campisano, S. U., Chap. 4, Laser Annealing of Semiconductors ed. Poate, J. M. and Mayer, J. W., Academic Press, New York (1982).Google Scholar
5.Poulovkian, Y. S. and Buyco, E. H., Specific Heat in Metallic Elements and Alloys, Plenum, New York, 1970.Google Scholar
6.Ho, C. Y., Powell, R. W. and Liley, P. E., J. Physical and Chemical Reference Data Suppl. No. 1, 288 (1974).Google Scholar
7.Fan, J. C. C. and Anderson, C. H., J. Appl. Phys. 52, 4003 (1981).Google Scholar
8.Diffusion Data 1, 48 (May 1967).Google Scholar
9.Trumbore, F. A., Spitzer, W. G., Logan, R. A. and Luke, C. L., J. Elect. Chem. Soc. 109, 734 (1962).Google Scholar
10.Mullins, W. W. and Sekerka, R. F., J. Appl. Phys. 35, 444 (1964).Google Scholar
11.Cullis, A. G., Hurle, D. J. J., Webber, H. C., Chew, N. G., Poate, J. M., Baeri, P. and Foti, G., Appl. Phys. Lett. 38, 642 (1981).Google Scholar
12.Cullis, A. G., these proceedings.Google Scholar
13.Poate, J. M., these proceedingsGoogle Scholar
14.Turnbull, D., these proceedings.Google Scholar
15.Holland, O. W. et al. , these proceedings.Google Scholar