Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T18:55:09.323Z Has data issue: false hasContentIssue false

Search for New Thermoelectric Materials through Exploratory Solid State Chemistry. The Quaternary Phases A1+xM3−2xBi7+xSe14, A1−xM3−xBi11+xSe20, A1−xM4−xBi11+xSe21 and A1−xM5−xBi11+xSe22 (A = K, Rb, Cs, M = Sn, Pb) and the Homologous Series Am[M6Se8]m[M5+nSe9+n]

Published online by Cambridge University Press:  21 March 2011

Antje Mrotzek
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824
Tim Hogan
Affiliation:
Department of Electrical Engineering, Michigan State University, East Lansing, MI 48824
Mercouri G. Kanatzidis
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824
Get access

Abstract

The compound types A1+xM3-2xBi7+xSe14, A1−xM3−xBi11+xSe20, A1−xM4−xBi11+xSe21 and A1−xM5−xBi11+xSe22 (A = K, Rb, Cs; M = Sn, Pb) form from reactions involving A2Se, Bi2Se3, M and Se. The single crystal structures reveal that they are all structurally related so that they all belong to the homologous series Am[M6Se8]m[M5+nSe9+n] (M = di- and trivalent metal), whose characteristics are three-dimensional anionic frameworks with tunnels filled with alkali ions. The building units that make up these structures are derived from different sections of the NaCl lattice. In these structures, the Bi and Sn (Pb) atoms are extensively disordered over the metal sites of the chalcogenide network, giving rise to very low thermal conductivity. These phases are all narrow gap semiconductors with 0.25 < Eg< 0.60 eV and many possess physico-chemical and charge transport properties suitable for thermoelectric investigations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] (a) Kanatzidis, M. G.; DiSalvo, F. J. ONR Quarterly Review 1996, XXVII, 1422. (b) Chung, D.-Y.; Iordanidis, L.; Choi, K.-S.; Kanatzidis, M. G. Bull. Kor. Chem. Soc 1998, 19, 1283-1293. (c) Kanatzidis, M. G. Semicond. and Semimetals, Academic Press 2001, 69, 51-100.Google Scholar
[2] Chung, D.-Y.; Hogan, T.; Brazis, P. W.; Rocci-Lane, M.; Kannewurf, C. R.; Bastea, M.; Uher, C.; Kanatzidis, M. G. Science 2000, 287, 10241027.Google Scholar
[3] (a) Kanatzidis, M. G.; Chung, D.-Y.; Iordanidis, L.; Choi, K.-S.; Brazis, P.; Rocci, M.; Hogan, T.; Kannewurf, C. Mat. Res. Soc. Symp. Proc. 1998, 545, 233246. (b) Brazis, P. W.; Rocci-Lane, M. A.; Ireland, J. R.; Chung, D.-Y.; Kanatzidis, M. G.; Kannewurf, C. R. Proc. Of the XVIIIth Int. Conf. On Thermoelectrics (ITC '99), Baltimore, USA 1999, 619-622.Google Scholar
[4] (a) Kanatzidis, M. G.; McCarthy, T. J.; Tanzer, T. A.; Chen, L.-H.; Iordanidis, L.; Hogan, T.; Kannewurf, C. R.; Uher, C.; Chen, B. Chem. Mater. 1996, 8, 14651474. (b) Chen, B.; Uher, C.; Iordanidis, L.; Kanatzidis, M. G. Chem. Mater. 1997, 9, 1655-1658.Google Scholar
[5] Choi, K.-S.; Chung, D.-Y.; Mrotzek, A.; Brazis, P.; Kannewurf, C. R.; Uher, C.; Chen, W.; Hogan, T.; Kanatzidis, M. G. Chem. Mater. 2001, 13, 756764.Google Scholar
[6] Choi, K.-S.; Chung, D.-Y.; Mrotzek, A.; Brazis, P. W.; Kannewurf, C. R.; Uher, C.; Chen, W.; Hogan, T.; Kanatzidis, M. G., Chem. Mater. 2001, 13, 756764.Google Scholar
[7] Mrotzek, A.; Chung, D-Y.; Hogan, T.; Kanatzidis, M. G. J. Mater. Chem. 2000, 10, 16671672.Google Scholar
[8] Mrotzek, A.; Chung, D-Y.; Ghelani, N.; Hogan, T.; Kanatzidis, M. G. Chem. Eur. J. 2001, 7, 19151926.Google Scholar
[9] Chung, D.-Y.; Choi, K.-S.; Iordanidis, L.; Schindler, J. L.; Brazis, P. W.; Kannewurf, C. R.; Chen, B.; Hu, S.; Uher, C.; Kanatzidis, M. G. Chem. Mater., 1997, 9, 30603071.Google Scholar
[10] (a) Anderson, J. S., J. Chem. Soc., Dalton Trans. 1973, 10, 11071115. (b) Swinnea, J. S.; Steinfink, H., J. Solid State Chem. 1982, 41, 114-123. (c) Mercurio, D.; Parry, B. H.; Frit, B.; Harburn, G.; Williams, R. P.; Tilley, R. J. D., J. Solid State Chem. 1991, 92, 449-459.Google Scholar
[11] Mrotzek, A.; Iordanidis, L.; Kanatzidis, M. G., Chem. Commun. 2001, 16481649.Google Scholar