Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-20T01:48:20.569Z Has data issue: false hasContentIssue false

Scattering Under Shear: Alignment of a Disordered Bicontinuous Mesophase

Published online by Cambridge University Press:  29 July 2011

Annela M. Seddon
Affiliation:
H.H. Wills Physics Laboratory, Tyndall Avenue, University of Bristol, BS8 1FD, Lund, Sweden.
Gudrun Lötze
Affiliation:
Department of Chemistry, Whiteknights, University of Reading, RG6 6AH, Lund, Sweden.
Tomás Plivelic
Affiliation:
University of Lund, MAX-Lab, SE-22100, Lund, Sweden.
Adam M. Squires
Affiliation:
Department of Chemistry, Whiteknights, University of Reading, RG6 6AH, Lund, Sweden.
Get access

Abstract

In this work we demonstrate that the application of shear to a disordered lyoptropic liquid phase formed by a biological lipid, monoolein formed in water and butanediol results in the formation of an aligned lamellar phase. Furthermore we show that if shear is applied to this disordered phase in the presence of additional water, an highly oriented inverse bicontinous cubic phase is created. We suggest that these two phase may have applications as biological models, as templates for nanostructured materials and in improved protein crystallization techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Luzzati, V., Delacroix, H., Gulik, A., GulikKrzywicki, T., Mariani, P. and Vargas, R., Lipid Polymorphism and Membrane Properties (Academic Press, San Diego, 1997) p. 3 10.1016/S0070-2161(08)60205-1Google Scholar
2. Cherezov, V., Clogston, J., Papiz, M. Z. and Caffrey, M., J. Mol. Biol. 357, 1605 (2006)10.1016/j.jmb.2006.01.049Google Scholar
3. Wadsten-Hindrichsen, P., Bender, J., Unga, J. and Engstrom, S., J. Coll. Int. Sci. 315, 701, (2007)10.1016/j.jcis.2007.07.011Google Scholar
4. Hamilton, W. A., Porcar, L., Butler, P. D. and Warr, G. G., J. Chem. Phys. 116, 8533 (2002)10.1063/1.1469602Google Scholar
5. Porcar, L., Hamilton, W. A., Butler, P. D. and Warr, G. G., Phys. Rev. Lett. 93, 198301, (2004)10.1103/PhysRevLett.93.198301Google Scholar
6. Chiu, M. L., Nollert, P., Loewen, M. C., Belrhali, H., Pebay-Peyroula, E., Rosenbusch, J. P. and Landau, E. M., Acta. Cryst. D - Biol. Cryst, 56, 781, (2000)10.1107/S0907444900004716Google Scholar
7. Drummond, C. J. and Fong, C., Curr. Op. Coll. Inter. Sci. 4, 449, (1999)10.1016/S1359-0294(00)00020-0Google Scholar
8. Bilewicz, R., Rowinski, P. and Rogalska, E., Bioelectrochem. 66, 3 (2005)10.1016/j.bioelechem.2004.02.005Google Scholar
9. Olsson, U. and Mortensen, K., J. Phys. II, 5, 789 (1995)Google Scholar
10. Rancon, Y. and Charvolin, J., J. Phys. II, 48, 1067 (1987)10.1051/jphys:019870048060106700Google Scholar
11. Rancon, Y. and Charvolin, J., J. Phys. Chem. 92, 2646 (1988)10.1021/j100320a049Google Scholar
12. Schulz, M. F., Bates, F. S., Almdal, K. and Mortensen, K., Phys. Rev. Lett. 73, 86 (1994)10.1103/PhysRevLett.73.86Google Scholar