Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T12:40:45.701Z Has data issue: false hasContentIssue false

Scanning Tunneling Luminescence of Semiconductors

Published online by Cambridge University Press:  01 February 2011

Get access

Abstract

We review scanning tunneling luminescence (STL) – a photon emission spectroscopy based on scanning tunneling microscopy (STM) – and report on its application to photovoltaics. As part of this exploratory research, we have investigated CuInSe2 thin films, solar cells based on quantum dots, and dilute nitride compounds. STL is very attractive because it is capable of nanometer resolution, which is being demanded by the spectacular advancement of nanoscience and nanotechnology. In addition, STM offers both unipolar and bipolar excitation of the luminescence and, consequently, the transport and recombination of electrons and holes can be investigated independently.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Alvarado, S.F., Renaud, Ph., Abraham, D.L., Schönenberger, A. Ch., Arent, D.J., and Meier, H.P., J. Vac. Sci. Technol. B 9, 409 (1991).Google Scholar
2. Hakanson, U., Johansson, M.K.-J., Persson, J., Johansson, J., Pistol, M.-E., Montelius, L., and Samuelson, L., Appl. Phys. Lett. 80, 494 (2002);Google Scholar
Hakanson, U., Johansson, M.K.-J., Holm, M., Pryor, C., Samuelson, L., Seifert, W., and Pistol, M.-E., Appl. Phys. Lett. 81, 4443 (2003).Google Scholar
3. Hakanson, U., Sass, T., Johansson, M.K.-J., Pistol, M.-E., and Samuelson, L., Phys. Rev. B 66, 235308 (2002).Google Scholar
4. Tsuruoka, T., Ohizumi, Y., and Ushioda, S., Appl. Phys. Lett. 82, 3257 (2003).Google Scholar
5. Jiang, C.-S., Noufi, R., Ramanathan, K., AbuShama, J.A., Moutinho, H.R., and Al-Jassim, M.M., Appl. Phys. Lett. 85, 2625, (2004).Google Scholar
6. Yan, Y., Jones, K.M., Abushama, J., Young, M., Asher, S., Al-Jassim, M.M., and Noufi, R., Appl. Phys. Lett. 81, 1008 (2002).Google Scholar
7. Jiang, C.-S., Hasoon, F.S., Moutinho, H.R., Al-Thani, H.A., Romero, M.J., and Al-Jassim, M.M., Appl. Phys. Lett. 82, 127 (2003).Google Scholar
8. Romero, M.J., Ramanathan, K., Contreras, M.A., Al-Jassim, M.M., Noufi, R., and Sheldon, P., Appl. Phys. Lett. 83, 4770 (2003).Google Scholar
9. Jiang, C.-S., Noufi, R., AbuShama, J.A., Ramanathan, K., Moutinho, H.R., Pankow, J., and Al-Jassim, M.M., Appl. Phys. Lett. 84, 3477 (2004).Google Scholar
10. AbuShama, J., Johnston, S., Moriarty, T., Teeter, G., Ramanathan, K., and Noufi, R., Prog. Photovolt. Res. Appl. 12, 39 (2004).Google Scholar
11. Luque, A. and Marti, A., Phys. Rev. Lett. 78, 5014 (1997).Google Scholar
12. Kurtz, S.R., Myers, D., and Olson, J.M., Proceedings of the 26th IEEE Photovoltaic Specialists Conference, pp. 875878 (1997).Google Scholar
13. Bett, A.W., Adelhelm, R., Agert, C., Beckert, R., Dimroth, F., and Schubert, U., Solar Energy Materials and Solar Cells 66, 541 (2001).Google Scholar