Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T08:47:14.106Z Has data issue: false hasContentIssue false

Scaling Behavior Near Superconducting Transition in the YBa2Cu3O7 System

Published online by Cambridge University Press:  26 February 2011

M. K. Wu
Affiliation:
Department of Physics and Materials Science Center, National Tsing-Hua University, Taiwan, ROC
M. J. Wang
Affiliation:
Department of Physics and Materials Science Center, National Tsing-Hua University, Taiwan, ROC
Y. C. Chen
Affiliation:
Department of Physics and Materials Science Center, National Tsing-Hua University, Taiwan, ROC
T. R. Chien
Affiliation:
Department of Physics and Materials Science Center, National Tsing-Hua University, Taiwan, ROC
C. C. Chi
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY
F. Holtzberg
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY
Get access

Abstract

We have carried out a systematic study of the detailed I-V characteristic in magnetic fields of the YBa2Cu3O7 (YBCO) single crystals and c-axis oriented thin films. For all the samples studied, there exists a temperature at which the I-V satisfies simple power law. The I-V characteristic also follows the scaling behavior predicted by the phase transition model based on the random disorder. The derived critical exponents suggest the occurrence of 3D to 2D crossover of the flux motion. The critical field at which the crossover occurs depends on the sample thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Muller, K. A., Takashige, M., and Bednorz, J. G., Phys. Rev. Lett. 58, 1143 (1987).Google Scholar
2. Iye, Y., Tamegai, T., Sakakibara, T., Goto, T., Miura, N., Takeya, H., and Takei, H., Physica C, 153–155, 26 (1988).Google Scholar
3. Palstra, T. T. M., Battlog, B., van Dover, R. B., Schneemeyer, L. F. and Waszczak, J. V., Appl. Phys. Lett. 54, 763 (1989).Google Scholar
4. Gammel, P. L., Schneemeyer, L. F., Waszczak, J. V. and Bishop, D. J., Phys. Rev. Lett. 61, 1666 (1988).Google Scholar
5. Koch, R. H., Foglietti, V. and Fisher, M. P. A., Phys. Rev. Lett. 64, 2586 (1990).Google Scholar
6. Gammel, P. L., Schneemeyer, L. F. and Bishop, D. J., Phys. Rev. Lett. 66, 953 (1991).Google Scholar
7. Worthington, T. K., Olsson, E., Nichols, C. S., Shaw, T. M. and Clarke, D. R., Phys. Rev. B43, 10538 (1991).Google Scholar
8. Tinkham, M., Phys. Rev. Lett., 61, 1658 (1988).Google Scholar
9. Nelson, D. R. and Seung, H. S., Phys. Rev. B39, 9153 (1989).Google Scholar
10. Fisher, D. S., Fisher, M. P. A. and Huse, D. A., Phys. Rev. B43, 130 (1991).Google Scholar
11. Obukhov, S. P. and Rubinstein, M., Phys. Rev. Lett. 65, 1279 (1990).Google Scholar
12. Feig'lman, M. V., Geshkenbein, V. B., Larkin, A. I. and Vinokur, V. M., Phys. Rev. Lett. 62, 2857 (1989).Google Scholar
13. Yeshurun, Y. and Malozemoff, A. P., Phys. Rev. Lett., 60, 2202, 1988.Google Scholar
14. Kaiser, D. L., Holtzberg, F., Chisholm, M. F. and Worthington, T. K., J. Crystal Growth, 85, 593 (1987).Google Scholar
15. Wu, M. K., Wang, M. J., Lin, J. L, Ling, D. C., Ma, K. R. and Chien, F. Z., AIP Conference Proceeding 219, ed. by Kao, Y. H., Coppens, , and Kwok, H. S., AIP, New York, 1991. p. 100 Google Scholar