Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T08:29:41.578Z Has data issue: false hasContentIssue false

Scalable Fabrication and Optical Characterization of Nm Si Structures

Published online by Cambridge University Press:  28 February 2011

Saleem H. Zaidi
Affiliation:
Center For High Technology Materials, University of New Mexico, Albuquerque, NM 87131
An-Shyang Chu
Affiliation:
Center For High Technology Materials, University of New Mexico, Albuquerque, NM 87131
S. R. J. Brueck
Affiliation:
Center For High Technology Materials, University of New Mexico, Albuquerque, NM 87131
Get access

Abstract

Observations of efficient room temperature photoluminescence (PL) from porous Si have generated a great deal of interest in the optical properties of nm-scale Si structures. The stochastic character of porous-Si fabrication results in a distribution of crystal sizes and shapes. We report on a scalable (to large areas) and manufacturable (to high volumes) fabrication technology for uniform, nm-linewidth Si structures providing an important testbed for controlled studies of these optical properties. Large areas ( ∼ 1 cm2) of extreme sub-μm structures (to ∼ 5 nm) are re-producibly fabricated. Both walls (1-D confinement) and wires (2-D confinement) are reported. The fabrication process includes: interferometric lithography, highly anisotropic KOH etching, and structure dependent oxidation. For the walls, nearly perfect <111> crystal planes form the sidewalls and very high width/depth aspect ratios (> 50) have been achieved. Raman scattering results on the walls demonstrate three regimes: 1) lineshapes and cross sections similar to bulk Si for line widths, W > 200 nm; 2) electromagnetic resonance enhancement of the cross section ( to - 100x) for W from 50-200 nm; and 3) highly asymmetric lineshapes and splittings from W < 30 nm. Photoluminescence is observed for the thinnest samples (W < 10 nm) and is as intense as that observed from porous Si with a spectral linewidth ∼ 50 % smaller than that of porous Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2 Pickering, C., Beale, M. I. J., Robbins, D. J., Pearson, P. J., and Greef, R., J. Phys. C: 17, 6535 (1984).Google Scholar
3 Pickering, C., Beale, M. I. J., Robbins, D. J., Pearson, P. J., and Greef, R., Thin Solid Films 125, 157 (1985).Google Scholar
4 Lehman, V. and Gosele, U., Appl. Phys. Lett. 58, 856 (1991).Google Scholar
5 Xu, Z. Y., Gal, M., and Gross, M., Appl. Phys. Lett. 60, 1375 (1992).Google Scholar
6 Brandt, M. S., Fuchs, H. D., Stutzman, M., Weber, J., and Cardona, M., Solid State Commun. 81, 307 (1992).Google Scholar
7 Roy, A., Chaimani, A., Sarma, D. D., and Sood, A. K., Appl. Phys. Lett. 61, 1655 (1992).Google Scholar
8 George, T., Anderson, M. S., Pike, W. T., L Lin, T., Fathauer, R. W., Jung, K. H., and Kwong, D. L., Appl. Phys. Lett. 60, 2359 (1992).Google Scholar
9 Robinson, M. B., Dillon, A. C., Haynes, D. R., and George, S. M., Appl. Phys. Lett. 61, 1414 (1992).Google Scholar
10 Van Buuren, T., Gao, Y., Tiedje, T., Dahn, J. R., and Way, B. M., Appl. Phys. Lett. 60, 3013 (1992).Google Scholar
11 Tsu, R., Shen, H., and Dutta, M., Appl. Phys. Lett. 60, 112 (1992).Google Scholar
12 Sui, Z., Leong, P., Herman, I. P., Higashi, G. S., and Temkin, H., Appl. Phys. Lett. 60, 2086 (1992).Google Scholar
13 Petrova-Koch, V., Muschik, T., Kux, A., Meyer, B. K., Koch, F., and Lehman, V., Appl. Phys. Lett. 61, 943 (1992).Google Scholar
14 Furukawa, S. and Miyasato, T., Jpn. J. Appl. Phys. 27, L2007 (1988).Google Scholar
15 Takagi, H., Ogawa, H., Yamazaki, Y. Y., Ishizaki, A., and Nakagiri, T., Appl. Phys. Lett. 56, 2379 (1990).Google Scholar
16 Furukawa, S. and Miyasato, T., Phys. Rev. B38, 5726 (1988).Google Scholar
17 Kanemitsu, Y., Ogawa, T., Shiraishi, K., and Takeda, T., Phys. Rev. B48, 4883 (1993).Google Scholar
18 Koch, F., Petrova-Koch, V., and Muschik, T., Jour, of Luminescence 57, 271 (1993).Google Scholar
19 Liu, H., Maluf, N. H., Pease, R. F. W., Biegelsen, D. K., Johnson, N. M., and Ponce, F. A., Jour. Vac. Sci. Technol. 10, 2846 (1992).Google Scholar
20 Liu, H., Biegelsen, D. K., Johnson, N. M., Ponce, F. A., and Pease, R. F. W., Jour. Vac. Sci. Technol. B11, 2352 (1993).Google Scholar
21 Fischer, P. B., Dai, K., Chen, E., and Chou, S. Y., Jour. Vac. Sci. Technol. B11, 2524 (1993).Google Scholar
22 Shank, C. V. and Schmidt, R. V., Appl. Phys. Lett. 23, 154 (1973).Google Scholar
23 H, Saleem. Zaidi, and Brueck, S. R. J., Appl. Opt. 27, 2999 (1988).Google Scholar
24 Saleem, Zaidi, H. and Brueck, S. R. J., Jour. Vac. Sci. Technol. B11, 658 (1993).Google Scholar
25 Kendall, D. L., Jour. Vac. Sci. Technol. A8, 3598 (1990).Google Scholar
26 D-B, Kao, McVittie, J. P., Nix, W. P., and Saraswat, K. C., IEEE Trans. Elect. Dev., ED-34, 1008 (1987).Google Scholar
27 Ravi, T. S., Marcus, R. B., and Liu, H., Jour. Vac. Sci. Technol. B9, 2733 (1991).Google Scholar
28 Saleem, Zaidi, H., An-Shyang, Chu, and Brueck, S. R. J., Proc. ASES 93, 1 (1993).Google Scholar
29 Goodes, S. R., Jenkins, T. E., Beale, M. I. J., Benjamin, J. D., and Pickering, C., Semicond. Sci. Technol. 3, 483 (1987).Google Scholar
30 Saleem, Zaidi, H., An-Shyang, Chu, and Brueck, S. R. J., OSA Annual Meeting (1993).Google Scholar
31 Murphy, D. L. and Brueck, S. R. J., Opt. Lett. 8, 494 (1983).Google Scholar
32 An-Shyang, Chu, Zaidi, Saleem H., and Brueck, S. R. J., Appl. Phys. Lett. 63, 905 (1993).Google Scholar
33 Fauchet, P. M. and H Campbell, I., Crit. Rev. in Solid and Mater. Sci. 14, S79 (1988).Google Scholar
34 Buda, F., Kohanoff, K., and Parrinello, M., Phys. rev. Lett. 69, 1272 (1992).Google Scholar