Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-28T12:52:07.427Z Has data issue: false hasContentIssue false

Routes towards large area, low pressure nanodiamond growth via pulsed microwave linear antenna plasma chemistry

Published online by Cambridge University Press:  14 March 2011

Michael Liehr
Affiliation:
Leybold Optics Dresden GmbH, Dresden, Germany
František Fendrych
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i, Prague 8, Czech Republic
Andrew Taylor
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i, Prague 8, Czech Republic
Miloš Nesládek
Affiliation:
IMOMEC division, IMEC, Institute for Materials Research, University Hasselt, Wetenschapspark 1, B3590 Diepenbeek, Belgium
Get access

Abstract

Current experimental configurations for MW PECVD diamond growth do not allow simple up-scaling towards large areas, which is essential for microelectronic industries and other applications. Another important issue is the reduction of the substrate temperature during diamond growth to enhance the compatibility with wafer processing technologies. Such advantages are provided by MW-linear antenna (LA) plasma applicators, allowing a scalable concept for diamond growing plasmas. In the present work we introduce a novel construction of LA MW applicators designed for nanodiamond growth by using plasmas ranging from continuous wave (CW) to high repetition rates pulsed modes (up to 20 kHz) which advantages are discussed in detail.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Williams, O. A., Nesladek, M., Daenen, M., Michaelson, S., Hoffman, A., Osawa, E., Haenen, K. and Jackman, R. B., Diamond & Related Materials, 17 (2008) 10801088 10.1016/j.diamond.2008.01.103Google Scholar
2. Butler, J. E., Sumant, A. V., Chemical Vapor Deposition, 2008, 14, 145160 Google Scholar
3. May, P.: Phil. Trans. R. Soc. Lond. A (2000) 358, 473495 10.1098/rsta.2000.0542Google Scholar
4. Tsugawa, K., Ishihara, M., Kim, J., Hasegawa, M. and Koga, Y., New Diamond and Frontier Carbon Technology, Vol. 16, No. 6 (2006)Google Scholar
5. Liehr, M. and Dieguez-Campo, M., Surface & Coatings Technology, 200 (2005) 2125 Google Scholar
6. Taylor, A, Fendrych, F, Fekete, L, Vlček, J, Řezáčová, V, Petrák, V, Krucký, J, Nesládek, M and Liehr, M, Diamond & Related Materials, Article in press Google Scholar
7. Williams, O.A., Douheret, O., Daenen, M., Haenen, K., Osawa, E. and Takahashi, M., Chemical Physics Letters 445 (2007) 255258 Google Scholar
8. Gicquel, A., Hassouni, K., Silva, F., J. Achard: Current Applied Physics 1 (2001) 479496 Google Scholar
9. Fortunato, W., Chiquito, A. J., Galzerani, J. C. and Moro, J. R.: Journal of Materials Science (2007) 42:73317336 10.1007/s10853-007-1575-0Google Scholar