Hostname: page-component-788cddb947-wgjn4 Total loading time: 0 Render date: 2024-10-19T01:25:05.830Z Has data issue: false hasContentIssue false

Relaxational Dynamics and Strength in Supercooled Liquids from Impulsive Stimulated Thermal Scattering

Published online by Cambridge University Press:  10 February 2011

Yongwu Yang
Affiliation:
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
Laura J. Muller
Affiliation:
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712
Keith A. Nelson
Affiliation:
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

Impulsive stimulated thermal scattering (ISTS), a time-domain light scattering technique, provides a more than 6-decade time range from sub-ns to many ms. It permits characterization of the structural relaxation dynamics and determination of the relaxation strength or Debye-Waller factor in supercooled liquids, and thus allows testing of the mode coupling theory of the liquidglass transition. ISTS experiments were performed on glass formers salol, butylbenzene, and the molten salt [Ca(N03)]0.4[KNO3]0.6. The relaxational dynamics and the Debye-Waller factorfq=0 were obtained. A square-root anomaly was observed in fq=0 (T) at a crossover temperature Tc for all three materials, consistent with the prediction of mode coupling theory.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Götze, W., in: Liquids, Freezing and the Glass Transition, ed. Hansen, J.P., Levesque, D. and Zimm-Justin, J. (North Holland, Amsterdam, 1991) p. 287; and W. Götze and L. Sjögren, Rep. Prog. Phys. 55, 241 (1992).Google Scholar
[2] Yan, Y.-X., Cheng, L.-T., and Nelson, K. A., J. Chem. Phys. 88, 6477 (1988); L.-T.Google Scholar
Cheng, Y.-X. Yan, and Nelson, K. A., J. Chem. Phys. 91, 6052 (1989); S. M. Silence, S. R. Goates, and K. A. Nelson, Chem. Phys. 149, 233 (1990); A. R. Duggal, and K. A. Nelson, J. Chem. Phys. 94 (1991); S. M. Silence, A. R. Duggal, L. Dhar, and K. A. Nelson, ibid. 96, 5448 (1992).Google Scholar
[3] Halalay, I. C., and Nelson, K. A., J. Chem. Phys. 97, 3557 (1992); I. C. Halalay, Y. Yang, and K. A. Nelson, J. Non-Cryst. Solids 172–174, 175 (1994).Google Scholar
[4] Halalay, I. C., Yang, Y., and Nelson, K. A., Transport Theory and Statistical Physics, 24, 1053 (1995).Google Scholar
[5] Yang, Y. and Nelson, K. A., J. Chem. Phys. 103, 7722 (1995).Google Scholar
[6] Yang, Y. and Nelson, K. A., Phys. Rev. Lett. 74, 4883 (1995).Google Scholar
[7] Yang, Y. and Nelson, K. A., J. Chem. Phys. 103, 7732 (1995).Google Scholar
[8] Fuchs, M., Götze, W., Hofacker, I., and Latz, A., J. Phys. Condens. Matter 3, 5047(1991).Google Scholar
[9] Toulouse, J., Coddens, G., and Pattnaik, R., Phys. A 201, 305 (1993).Google Scholar
[10] Li, G., Du, W. M.; Sakai, A., and Cummins, H. Z., Phys. Rev. A. 46, 3343 (1992).Google Scholar
[11] Sidebottom, D. L. and Sorensen, C. M., Phys. Rev. B 40, 461 (1988).Google Scholar
[12] Yang, Y. and Nelson, K. A., J. Chem. Phys. (submitted).Google Scholar
[13] Mezei, F., Knaak, W. and Farago, B., Phys. Scr. 19, 363 (1987).Google Scholar
[14] Li, G., Du, W. M., Chen, X. K., and Cummins, H. Z., Phys. Rev. A. 45, 3867 (1992).Google Scholar
[15] Cummins, H. Z., Du, W. M., Fuchs, M., Gotze, W., Hildebrand, S., Latz, A., Li, G., and Tao, N. J., Phys. Rev. E. 47, 4223 (1993).Google Scholar
[16] Li, G., Du, W. M., Hernandez, J., and Cummins, H. Z., Phys. Rev. E. 48, 1192 (1993).Google Scholar
[17] Sidebottom, D. L. and Sorensen, C. M., J. Chem. Phys. 91, 7153 (1989).Google Scholar
[18] Pavlatou, E. A., Rizos, A.K., Papatheodorou, G. N., and Fytas, G., J. Chem. Phys. 94, 224 (1991).Google Scholar
[19] Fourkas, J. T. and Berg, M., J. Chem. Phys. 98, 7773 (1993).Google Scholar
[20] Fourkas, J. T., Benigno, A., and Berg, M., J. Chem. Phys. 99, 8552 (1993).Google Scholar
[21] Angell, C. A., J. Phys. Chem. Sol. 49, 863 (1988).Google Scholar
[22] Cummins, H. Z., Li, G., Du, W. M., and Hernandez, J., Phys. A 204, 169 (1994).Google Scholar