Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-28T17:38:18.879Z Has data issue: false hasContentIssue false

Relaxation of Grain Boundaries in Au {110} Mazed Bicrystal Thin Films Observed by HREM

Published online by Cambridge University Press:  21 March 2011

Tamara Radetic
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory Berkeley, CA 94720, U.S.A.
Ulrich Dahmen
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory Berkeley, CA 94720, U.S.A.
Get access

Abstract

Thin films of gold can be grown on {001} Ge single crystal substrates in two equivalent {110} orientation variants, related to each other by a 90° rotation about the surface normal. The morphology of the films is that of a mazed bicrystal, a polycrystalline film with many randomly distributed columnar grains in only two orientations. All grain boundaries are of the type S99 and display pure tilt character. In this work, we report on observations of the structural relaxation of these grain boundaries, with special emphasis on their characteristic behavior at the intersection with free surfaces and their evolution during thermal annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Merkle, K. L. and Wolf, D., Phil. Mag. A 65, 513 (1992).Google Scholar
2. Merkle, K. L., J. Phys. Chem. Solids 55, 991 (1994).Google Scholar
3. Pénisson, J. M., Lançon, F. and Dahmen, U., Mater. Sci. Forum 294–296, 2723 (1999).Google Scholar
4. Merkle, K. L., Microscopy & Microanalysis 3, 339 (1997).Google Scholar
5. Rittner, J. D., Seidman, D. N. and Merkle, K. L., Phys. Rev. B 53, R4241 (1996).Google Scholar
6. Rittner, J. D. and Seidman, D. N., Phys. Rev. B 54, 6999 (1996).Google Scholar
7. Garg, A. and Clark, W.A.T., MRS Proc. 122, 75 (1988)Google Scholar
8. Schmidt, C., Ernst, F., Finnis, M. W. and Vitek, V., Phis. Rev. Lett. 75, 2160 (1995).Google Scholar
9. Hofmann, D. and Ernst, F., Ultramicroscopy 53, 205 (1994).Google Scholar
10. Medlin, D. L., Campbell, G. H. and Carter, C. B., Acta Mater. 46, 5135 (1998).Google Scholar
11. Medlin, D. L., Foiles, S. M. and Cohen, D., Acta Mater. 49, 3689 (2001).Google Scholar
12. Mullins, W.W., Acta Metall. 6, 414 (1958).Google Scholar
13. Dahmen, U. and Thangaraj, N., Mat. Sci. Forum 126–128, 45 (1993)Google Scholar
14. Westmacott, K. H., Hinderberger, S. and Dahmen, U., Phil. Mag. A 81, 1547 (2001).Google Scholar
15. Dahmen, U. and Westmacott, K.H., MRS Proc. 229, 167 (1991)Google Scholar
16. Okamoto, H. and Massalski, T. B., Bull. of Alloy Phase Diagrams 5, 601 (1984).Google Scholar
17. Radetic, T. and Dahmen, U., Proc. Microscopy & Microanalysis 7, 278 (2001)Google Scholar