Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-13T22:38:15.576Z Has data issue: false hasContentIssue false

Relaxation Defect Characterization of RTCVD Si1-xGex/Si Heterostructjres by Electrical and Optical Techniques

Published online by Cambridge University Press:  03 September 2012

A. Souifi
Affiliation:
INSA de Lyon, Bât 502, LPM (associé CNRS URA 358), 20 av Albert Einstein, 69621 Villeurbanne Cedex, France
G. Bremond
Affiliation:
INSA de Lyon, Bât 502, LPM (associé CNRS URA 358), 20 av Albert Einstein, 69621 Villeurbanne Cedex, France
T. Benyattou
Affiliation:
INSA de Lyon, Bât 502, LPM (associé CNRS URA 358), 20 av Albert Einstein, 69621 Villeurbanne Cedex, France
G. Guillot
Affiliation:
INSA de Lyon, Bât 502, LPM (associé CNRS URA 358), 20 av Albert Einstein, 69621 Villeurbanne Cedex, France
D. Dutartre
Affiliation:
Centre National d'Etudes des Télécommunications, CNS, Chemin du Vieux Chine, BP 98, 38243 MEYLAN, France.
Get access

Abstract

Photoluminescence (PL) and deep level transient spectroscopy (DLTS) measurements have been carried out on Si1-xGex/Si heterostructures and Si/Si1-xGex/Si double heterostructures with fully strained or partially relaxed layers (0%<xGe<20%) grown by chemical vapor deposition using rapid thermal processing (RTCVD). This study reports strong PL and DLTS results connected to the establishment of relaxation defects in the SiGe layer and at the heterointerface which appear when the layer starts to relax. Strong broad PL bands (defect related) and sharp lines (similar to dislocation related D-lines on Si) have been detected and connected to this relaxation process. These PL results are strengthened by the clear observation, using DLTS experiments on relaxed layers, of interface traps with a maximum energy around Ev + 0.5eV resulting from the presence of misfit dislocations at the SiGe/Si hetero-interface and a deep level at Ev + 0.38eV related to dislocations or relaxation defects in the SiGe layer. Moreover, low temperature PL excitonic transition reported on Si/Si1-xGex/Si double heterostructures is described as a good tool to investigate the relaxation process which occurs in these heteroepitaxial layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Jain, S. C. and Hayes, W., Semicond. Sci. Technol. 6, 547 (1991)CrossRefGoogle Scholar
[2] People, R., IEEE J. Quant. Electron, 22, 1696 (1986) and J. Appl. Phys., 59, 3296 (1986)CrossRefGoogle Scholar
[3] Kasper, E., Daembkes, H., Inst. Phys. Conf. Series (Bristol: Inst. of Phys) 82, 93 (1987)Google Scholar
[4] Bean, J. C., Silicon-Molecular Beam Epitaxy, Ed. Kasper, E. and Beam, J. C. (Boca Raton, Florida: CRC Press) Vol 1, 65 (1988)Google Scholar
[5] Rosencher, E., Silicon-Molecular Bean Epitaxy, Ed Kapser, E. and Bean, J. C. (Boca Raton, Florida: CRC Press) Vol 1, 161 (1988)Google Scholar
[6] Luryi, S. and Sze, S. M., Silicon-Molecular Bean Epitaxy, Ed Kasper, E. and Bean, J.C. (Boca Raton, Florida: CRC Press) Vol 1, 181 (1988)Google Scholar
[7] Iyer, S. S., Patton, G. L., Sytork, J. M. C., Meyerson, B. S. and Harame, D. L., IEEE Trans. on Electron Devices, 36, 2043 (1989)CrossRefGoogle Scholar
[8] Sauer, R., Weber, J. and Stolz, J., Appl. Phys A36, 1 (1985)CrossRefGoogle Scholar
[9] Weronek, K., Weber, J., Höpner, A., Ernst, F., Buchner, R., Stefaniak, M. and Alexander, H., Proc 16th Int. Conf. on Defects in Semiconductors, Lehigh University, Pennsylvanie 1991, Materials Science Forum (Ed. Davies, G., Deleo, G. G. and M. Stavola) Vol 83–87 1315 (1992)Google Scholar
[10] Kaniewski, J., Kaniewska, M. and Peaker, A. R., Appl. Phys. Lett., 60, 359 (1992) and references inside.CrossRefGoogle Scholar
[11] Weber, J. and Alonso, M. I., Proc. Int. Conf. on the Science and Technology of Defect Control in Semiconductors Yokohama, Japan 1989 (Ed. Sumino, K.) Elsevier Sience Publishers B. V. (North-Holand) 1453 (1990)CrossRefGoogle Scholar
[12] Terachima, K., Tajima, M., Sakai, A., Tatsumi, T., J. of Crystal Growth 111, 920 (1991)CrossRefGoogle Scholar
[13] Terachima, K., Tajima, M., Niino, T. and Tatsumi, T., extended abstract of the 1991 Conference on Solid State Devices and Materials, Yokohama, Japan, p 24 6 (1991)Google Scholar
[14] Zachai, R., Eberl, K., Abstreiter, G., Kapser, E., Kibbel, H., Phys. Rev. Lett., 64, 1055 (1990)CrossRefGoogle Scholar
[15] Arbet-Engels, V., Kallel, M. A. and Wang, K. L., Appl. Phys. Lett., 59, 1705 (1991)CrossRefGoogle Scholar
[16] Noel, J. P., Rowel, N. L., Houghton, D. C. and Perovic, D. D., Appl. Phys. Lett. 57, 1037 (1990)CrossRefGoogle Scholar
[17] Hougton, D. C., Noel, J. P. and Rowell, N. L., Mat. Sci. Eng. B9, 237 (1991)CrossRefGoogle Scholar
[18] Dutartre, D., Bremond, G., Souifi, A. and Benyattou, T., Phys. Rev. B, 44, 11525 (1991)CrossRefGoogle Scholar
Souifi, A., Bremond, G., Benyattou, T., Dutartre, D. and Berbezier, T., to be published in J. Vac. Sci. and Techn. B10 (1992)Google Scholar
[19] Robbins, D. J., Canham, L. T., Barnett, S. J., Pitt, A. D., Calcott, P., J. Appl. Phys 71, 14707 (1992)CrossRefGoogle Scholar
[20] Lang, D. V., People, R., Bean, J. C. and Sergent, A. M., Appl. Phys. Lett. 47, 1333 (1985)CrossRefGoogle Scholar
[21] Braunstein, R., Moore, A. R. and Herman, F., Phys. Rev. 109, 695 (1958)CrossRefGoogle Scholar
[22] Patel, J. R. and Kimerling, L. C., Journal de Physique, 40, C6–67 (1979).Google Scholar