Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T01:15:24.514Z Has data issue: false hasContentIssue false

Relationship Between Structure and Electromigration Characteristics of Pure Aluminum Films

Published online by Cambridge University Press:  10 February 2011

David P. Field
Affiliation:
TexSEM Laboratories, 226W 2230N, Provo, UT, 84604 USA
Oleg V. Kononenko
Affiliation:
TexSEM Laboratories, 226W 2230N, Provo, UT, 84604 USA
Victor N. Matveev
Affiliation:
Inst. of Microelectronics Tech., Chernogolovka 142432, Moscow District, RUSSIA
Get access

Abstract

Aluminum films were deposited from a high purity aluminum source by the self-ion assisted technique onto oxidized silicon wafers with TiN sub-layers. The ions were accelerated toward the substrate by potentials of 0, 3 and 6 kV. The films were patterned into strips 670 μm long and 8 μm wide using photo-lithographic procedures and wet etching. Average drift velocities were measured in the films tested under electromigration conditions. Electromigration activation energy was obtained for the films. It was found that electromigration activation energy increased with the acceleration potential. The strength of the (111) fiber texture, however, decreased with the acceleration potential. Therefore, the weaker textures resulted in higher electromigration activation energies. These results can be explained in terms of grain boundary structure, which controls electromigration behavior. By using orientation imaging microscopy to characterize the structures, it was shown that the weaker textured specimens contained a high fraction of low angle and low diffusivity grain boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vaidya, S. and Sinha, A.K., Thin Solid Films, 75, 253 (1981).Google Scholar
2. Rose, J.H., Appl. Phys. Lett., 61, 2170 (1992).Google Scholar
3. Hurd, J.L., Rodbell, K.P., Knorr, D.B., and Koligman, N.L., MRS Symp. Proc, 343, 653 (1994).Google Scholar
4. Campbell, A.N., Mikawa, R.E., and Knorr, D.B., J. Elect. Mat., 22, 589 (1993).Google Scholar
5. Knorr, D.B. and Rodbell, K.P., J. Appl. Phys., 79, 2409 (1996).Google Scholar
6. Fionova, L.K., Kononenko, O.V. and Matveev, V.N., Ser. Metall., 27, 329 (1992).Google Scholar
7. Fionova, L.K., Kononenko, O.V. and Matveev, V.N., Thin Solid Films, 227, 54 (1992).Google Scholar
8. Kononenko, O.V., Ivanov, E.D., Matveev, V.N., and Khodos, I.I., Ser. Metall. Mater., 33, 1981 (1995).Google Scholar
9. Adams, B.L., Wright, S.I., and Kunze, K., Metall. Trans., 24, 819 (1993).Google Scholar
10. Krieger-Lassen, N.C., Conradsen, K., and Juul-Jensen, D., Scanning Microsc., 6, 115 (1992).Google Scholar
11. Wright, S.I., J. Computer-Assisted Microscopy, 5, 207 (1993).Google Scholar
12. Field, D.P., Dingley, D.J., Noweli, M.M., and Adams, B.L., Proc. ISTFA '95, ASM International, Materials Park, OH, p. 49, 1995.Google Scholar
13. Kononenko, O.V., Matveev, V.N., Kasumov, A. Yu., Kislov, N.A., and Khodos, I.I., Vacuum, 46, 685 (1995).Google Scholar
14. Kononenko, O.V. and Matveev, V.N., MRS Symp. Proc, 356, 501 (1995).Google Scholar
15. Matthies, S., and Vinel, G.W., Materials Science Forum, 157–162, 1641 (1994).Google Scholar
16. Mackenzie, J.K., Biometrika, 45, 229 (1958).Google Scholar
17. Morawiec, A., J. Appl. Crystallogr., 28, 289 (1995).Google Scholar
18. Field, D.P. and Dingley, D.J., J. Electr. Mater., 25, 1767 (1996).Google Scholar
19. Field, D.P., Sanchez, J.E. Jr, Besser, P.R., and Dingley, D.J., To Be Published.Google Scholar
20. Pospiech, J., Sztwiertnia, K. and Haessner, F., Textures and Microstructures, 6, 201 (1986).Google Scholar
21. Adams, B.L., Morris, P.R., Wang, T.T., Willden, K.S., and Wright, S.I., Acta metall., 35, 2935 (1987).Google Scholar
22. Kronberg, M.L. and Wilson, F.H., Trans. Metall. Soc. AIME, 185, 501 (1949).Google Scholar
23. Bollmann, W., Crystal Defects and Crystalline Interfaces, Springer-Verlag, New York, 1970.Google Scholar
24. Lee, K.T., Szpunar, J.A., Morawiec, A., Knorr, D.B., and Rodbell, K.P., Can. Metall. Quarterly, 34, 287 (1995).Google Scholar
25. Brandon, D.G., Acta Metall., 14, 1479 (1966).Google Scholar
26. Turnbull, D. and Hoffman, R.E., Acta Metall., 2, 419 (1954).Google Scholar
27. Knorr, D.B., MRS Symp. Proc., 309, 75 (1993).Google Scholar