Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-19T20:50:28.610Z Has data issue: false hasContentIssue false

Recrystallization Kinetics During Fast Thermal Annealing of Pfn+ Implanted Silicon+

Published online by Cambridge University Press:  26 February 2011

W. O. Adekova
Affiliation:
C.R.N. - PHASE, B.P. 20, F-67037 STRASBOURG Cedex (FRANCE)
J. C. Muller
Affiliation:
C.R.N. - PHASE, B.P. 20, F-67037 STRASBOURG Cedex (FRANCE)
P. Siffert
Affiliation:
C.R.N. - PHASE, B.P. 20, F-67037 STRASBOURG Cedex (FRANCE)
L. Pedulli
Affiliation:
Consiglio Nazionale delle Richerche, Instituto LAMEL, Via Castagnoli 1, 1 40126 BOLOGNA (ITALY).
Get access

Abstract

The damage recovery and electrical activation of PFn+ (1 ≤n ⩽,5) implanted silicon layers during fast thermal annealing has been investigated. The <100> oriented wafers were implanted by glow discharge with 30 keV PFn+ ions at a dose of 2.5–3.1015 ions/cm2 and subsequently annealed using incoherent light pulses in the temperature range 600–1100°C with irradiation times of 1–15 secs.

Our results show that the maximum electrical activity is obtained by about 750°C, 15 sec and the same activity is reached for shorter annealing times and higher temperatures (typically 820°/ 5 sec; 950°C / 1 sec). These values and Rutherford Backscattering analysis reveal that the velocity of regrowth of the PFn+-implantation amorphized layer is lower than in the case of P+ implantation and that the former requires a higher activation energync≃3.4 eV.

TEM analysis reveals precipitates in 820°C/4 s annealed samples with the appearance of dislocation loops at 980°C/4 s annealing. Finally two characterizable defect levels (ETT = EV + 180 meV, ET2 = EV + 542 meV) are seen to remain in the PFn+ implanted samples examined by DLTS, even after annealing at 1100°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Nishiyama, K., Arai, K. and Watanabe, N., Jap. J. Appl. Phys. 19, L563, (1980).Google Scholar
2) Gat, A., IEEE Electr. Device Lett. EDL–2, 8 (1981).Google Scholar
3) Fulks, R.T., Russo, C.J., Hansley, P.R. and Kamins, T.I., AppI. Phys. Lett. 39, 604 (1981).CrossRefGoogle Scholar
4) Narayan, J. and Holland, O.W., J. Appl. Phys. 56, 10 (1984).Google Scholar
5) Bentini, G.G, Correra, L., Galloni, R., Pedulli, L., Muller, J.C., Meshi, A., Hage-Ali, N. and Siffert, P., 16th IEEE Photovoltaïc Specialists Conf. San Diego (1982)p. 759ýGoogle Scholar
6) Pedulli, L., Correra, L., Adekoya, W.O., Grob, A., Muller, J.C. and Siffert, P., Proc. 4th MRS-Europe Conf. Strasbourg, May (1985).Google Scholar
7) Pensl, G., Schultz, M., Stolz, P., Johnson, N.M., Gibbons, J.F., Hoyt, J., Mat. Res. Soc. Proc. Vol 23, (1984), Elsev. Publ. Inc p. 347.Google Scholar
8) Adekoya, W.O., Fasasi, N., Muller, J.C. and Siffert, P., same reference as 6.Google Scholar
9) Adekoya, W.O., Muller, J.C. and P. Siffert (to be published).Google Scholar
10) Siffert, P., Rev. Phys. Appliqude 12, 1223 (1977).Google Scholar
11) Muller, J.C. and Siffert, P., Rad. Effects 63, 81 (1982).Google Scholar
12) Csepregi, L., Kennedy, E.F., Gallagher, P.J., Mayer, J.W. and Sigmon, T.W., J. AppI. Phys. 48, 4234 (1977).Google Scholar
13) Lietolia, A., Wakita, A., Sigmon, T.W. and Gibbons, J.F., J. AppI. Phys. 53, (1982)Google Scholar
14) Auret, F.D. and Mooney, P.M., J. Appl. Phys. 55, 4 (1984).Google Scholar
15) Laugier, A., AFME Meeting, Nov (1985) Nice, France.Google Scholar
16) Troxell, J.R., Sol. State. Elect. Vol.26, n°6, 539 (1983).CrossRefGoogle Scholar