Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-29T09:39:24.896Z Has data issue: false hasContentIssue false

Recent Developments in Magnetic Recording Heads

Published online by Cambridge University Press:  10 February 2011

Atsushi Tanaka
Affiliation:
Storage System Laboratories, Fujitsu Laboratories Ltd., Atsugi, 243–0197, Japan
Mitsumasa Oshiki
Affiliation:
Storage System Laboratories, Fujitsu Laboratories Ltd., Atsugi, 243–0197, Japan
Get access

Abstract

Recently developed and future magnetic head technologies are reviewed. Scaling of dimensions brought about significant increases in recording densities in the last decade. On the recording head aspect, as the read head is narrowed, large improvements in sensitivity are required. Therefore, spin-valve read heads have been improved by introducing synthetic ferromagnetic pinned layers, a spin filter back layer and a specular scattering layer. The current perpendicular to plane (CPP) structure is now being adopted instead of the current in plane (CIP) structure which is the present magnetic head structure. Under heads with a CPP structure, tunneling magnetoresistance (TMR) devices and multilayer GMR are candidates. In CPP mode, we can make better use of “spintronics” or spin-dependent conduction phenomena because device character depends more directly on the spin-dependent electronic states of the materials. Future technologies of read head are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kanai, H., Yamada, K., Aoshima, K., Ohtsuka, Y., Kane, J., Kanamine, M., Toda, J., and Mizoshita, Y.: IEEE Trans. Magn., 32, 3368 (1996).Google Scholar
2. Tanaka, A., Shimizu, Y., Kishi, H., Nagasaka, K., and Oshiki, M., IEEE Trans. Magn., 33, 3592 (1997).Google Scholar
3. Kanai, H., Kane, J., Yamada, K., Aoshima, K., Kanamine, M., Toda, J., and Mizoshita, Y.: IEEE Trans. Magn., 33, 2872 (1997).Google Scholar
4. Tanaka, A., Shimizu, Y., Kishi, H., Nagasaka, K., Kanai, H., and Oshiki, M., IEEE Trans. Magn., 35, 700 (1999).Google Scholar
5. Abarra, E. N., Suzuki, M., and Okamoto, I., AA-01, IEEE International Magnetics Conference, Toronto, Canada, April 2000.Google Scholar
6. Leal, J. L. and Kryder, M. H., J. Appl. Phys., 83, 3720 (1998).Google Scholar
7. Shimizu, Y, Tanaka, A., Oshiki, M., and Kataoka, Y, IEEE Trans. Magn., 35, 2622 (1999).Google Scholar
8. Nagasaka, K., Seyama, Y, Kondo, R., Oshima, H., Shimizu, Y, Tanaka, A., FUJITSU Sci. Tech. J. 37 192 (2001).Google Scholar
9. Zhang, S., and Levy, P. M., J. Appl. Phys., vol. 69, 4786 (1991).Google Scholar
10. Pratt, W. P. Jr, Lee, S. F., Slaughter, J. M., Loloee, R., Schroeder, P. A., and Bass, J., Phys. Rev. Lett., 66, 3060 (1991).Google Scholar
11. Rottmayer, R., and Zhu, J.-G., IEEE Trans. Magn., 31, 2597 (1995).Google Scholar
12. Nagasaka, K., Seyama, Y., Varga, L., Shimizu, Y., and Tanaka, A., J. Appl. Phys. 89, 6943 (2001).Google Scholar
13. Oshima, H., Nagasaka, K., Seyama, Y, Shimizu, Y, Eguchi, S., and Tanaka, A., J. Appl. Phys. 91, 8105 (2002).Google Scholar
14. Nagasaka, K., Seyama, Y, Oshima, H., Kondo, R., Shimizu, Y and Tanaka, A., to be published.Google Scholar
15. Oshima, H., Nagasaka, K., Seyama, Y., Shimizu, Y., and Tanaka, A., Phys. Rev. B, 66 140404 (2002).Google Scholar
16. Ji, Y., Strijkers, G.J., Yang, F.Y., Chien, C.L., Byers, J.M., Anguelouch, A., Xiao, G., and Gupta, A., Phys. Rev. Lett. 86, 5585 (2001).Google Scholar
17. Valet, T. and Fert, A., Phys. Rev. B 48, 7099 (1993).Google Scholar