Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-23T11:17:24.916Z Has data issue: false hasContentIssue false

Rapid Thermal Processing of III-Nitrides

Published online by Cambridge University Press:  10 February 2011

J. Hong
Affiliation:
University of Florida, Gainesville FL 32611 USA
J. W. Lee
Affiliation:
University of Florida, Gainesville FL 32611 USA
C. B. Vartuli
Affiliation:
University of Florida, Gainesville FL 32611 USA
J. D. MacKenzie
Affiliation:
University of Florida, Gainesville FL 32611 USA
S. M. Donovan
Affiliation:
University of Florida, Gainesville FL 32611 USA
C. R. Abernathy
Affiliation:
University of Florida, Gainesville FL 32611 USA
R. V. Crockett
Affiliation:
University of Florida, Gainesville FL 32611 USA
S. J. Pearton
Affiliation:
University of Florida, Gainesville FL 32611 USA
J. C. Zolper
Affiliation:
Sandia National Laboratories, Albuquerque NM 87185 USA
F. Ren
Affiliation:
Lucent Technologies, Bell Laboratories, Murray Hill NJ 07974 USA.
Get access

Abstract

Transient thermal processing is employed for implant activation, contact alloying, implant isolation and dehydrogenation during III-nitride device fabrication. We have compared use of InN, AlN and GaN powder as methods for providing a N2 overpressure within a graphite susceptor for high temperature annealing of GaN, InN, A1N and InAlN. The AlN powder provides adequate surface protection to temperatures of ∼1100°C for AlN, > 1050°C for GaN, ∼600°C for InN and ∼800°C for the ternary alloy. While the InN powder provides a higher N2 partial pressure than AlN powder, at temperatures above ∼750°C the evaporation of In is sufficiently high to produce condensation of In droplets on the surfaces of the annealed samples. GaN powder achieved better surface protection than the other two cases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See for example Morkoc, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B. and Burns, M., J. Appl. Phys. 76 1363 (1994).Google Scholar
2. GaN and Related Materials, ed. Pearton, S. J. (Gordon and Beach, NJ 1996).Google Scholar
3. Akasaki, I., Amano, H., Koide, Y., Hiramatsu, K. and Sawaki, N., J. Cryst. Growth 98 209 (1989).Google Scholar
4. Ambacher, O., Brandt, M. S., Dimitrov, R., Metzger, T., Stutzmann, M., Fischer, R. A., Miehr, A., Bergmaier, A. and Dollinger, G., J. Vac. Sci. Technol. B 14 3532 (1996).Google Scholar
5. Guo, Q., Kato, O. and Yoshida, A., J. Appl. Phys. 73 7969 (1993).Google Scholar
6. Eddy, C. R. and Moustakas, T. D., J. Appl. Phys. 73 448 (1993).Google Scholar
7. Abernathy, C. R., Mat. Sci. Eng. Rep R 14 203 (1995).Google Scholar
8. Nakamura, S., Senoh, M. and Mukai, T., Appl. Phys. Lett. 62 2390 (1993).Google Scholar
9. Zolper, J. C., Rieger, D. J., Baca, A. G., Pearton, S. J., Lee, J. W. and Stall, R. A., Appl. Phys. Lett. 69 538 (1996).Google Scholar
10. Abernathy, C. R., J. Vac. Sci. Technol. A 11 869 (1993).Google Scholar
11. Abernathy, C. R., MacKenzie, J. D., Bharatan, S. R., Jones, K. S and Pearton, S. J., Appl. Phys. Lett. 66 1632 (1995).Google Scholar
12. A1N and InN powders obtained from AESAR; GaN powder obtained from Parke Mathematical Laboratories.Google Scholar
13. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kikoyu, H. and Sugimoto, Y., Jap. J. Appl. Phys. 35 L74 (1996).Google Scholar
14. Pearton, S. J., Bendi, S., Jones, K. S., Krishnamoorthy, V., Wilson, R. G., Ren, F., Karlicek, R. K. Jr and Stall, R. A., Appl. Phys. Lett. 69 1879 (1996).Google Scholar