Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T08:07:56.981Z Has data issue: false hasContentIssue false

Rapid Thermal Processing for Strained-Layer Semiconductor Devices

Published online by Cambridge University Press:  21 February 2011

John C. Zolper
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-5800
David R. Myers
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-5800
Get access

Abstract

Strained-layer semiconductors have revolutionized modern heterostructure devices by exploiting the modification of semiconductor band structure associated with the coherent strain of lattice-mismatched heteroepitaxy. The modified band structure improves transport of holes in heterostructures and enhances the operation of semiconductor lasers. Strainedlayer epitaxy also can create materials whose band gaps match wavelengths (e. g. 1.06 μm and 1.32 μm) not attainable in ternary epitaxial systems lattice matched to binary substrates. Other benefits arise from metallurgical effects of modulated strain fields on dislocations.

Lattice mismatched epitaxial layers that exceed the limits of equilibrium thermodynamics will degrade under sufficient thermal processing by converting the as-grown coherent epitaxy into a network of strain-relieving dislocations. After presenting the effects of strain on band structure, we describe the stability criterion for rapid-thermal processing of strained-layer structures and the effects of exceeding the thermodynamic limits. Finally, device results are reviewed for structures that benefit from high temperature processing of strained-layer superlattices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Osbourn, G. S., J. Appl. Phys. 53 (3) 1586 1982.CrossRefGoogle Scholar
2. Osbourn, G. S., Gourley, P. L., Fritz, I. J., Biefield, R. M., Dawson, L. R., and Zipperian, T. E., in Semiconductors & Semimetals. vol 24, edited by Dingle, R., (Academic Press, New York, 1987) chapter 8.Google Scholar
3. Arent, D. J., Deneffe, K., Hoof, C. Van, Boeck, J. De, and Borghs, G., J. Appl. Phys. 66 (4) 1739 1989.CrossRefGoogle Scholar
4. Fritz, I. J., Brennan, T. M., and Ginley, D. S., Solid State Comm., 75, 289 (1990).Google Scholar
5. Myers, D. R., OSA Proc. Picosecond Electronics and Optoelectronics, vol 9, edited by Sollner, G. and Shah, J., 236 (1991).Google Scholar
6. T. Zipperian, E., Dawson, L. R., Barnes, C. E., Wiczer, J. J., and Osbourn, G. C., Tech. Digest IEDM, p. 524 (1984).Google Scholar
7. Fritz, I. J. and Schirber, J. E., in Compound Semiconductor Strained-Layer Superlattices. edited by Biefield, R. M. (Trans Tech Publications, Switzerland, 1989) p. 83.Google Scholar
8. Welch, D. F., Streifer, W., Schaus, C. F., Sun, S., and Gourley, P. L., Appl. Phys. Lett. 56 (1) 10(1990).Google Scholar
9. Dodson, B. W. and Fritz, I. J., in Compound Semiconductor Strained-Layer Supdrlattices. edited by Biefield, R. M. (Trans Tech Publications, Switzerland, 1989) p. 29.Google Scholar
10. Matthews, J. W. and Blakeslee, A. E., J. Crystal Growth, 27, 118 (1983).Google Scholar
11. Vawter, G. A. and Myers, D. R., J. Appl. Phys. 65 (12), 4770 (1989).CrossRefGoogle Scholar
12. Tsao, J. Y. and Dodson, B. W., Appl. Phys. Lett. 53 (10), 848 (1988).Google Scholar
13. Peercy, P. S., Dodson, B. W., Tsao, J. Y., Jones, E. D., Myers, D. R., Zipperian, T. E., Dawson, L. R., Biefield, R. M., Klein, J. F., Hills, C. R., IEEE Electron Device Lett., EDL–9 (12), 621 (1988).CrossRefGoogle Scholar
14. Picraux, S. T., Arnold, G. W., Myers, D. R., Dawson, L. R., Biefield, R. M., Fritz, I. J., and Zipperian, T. E., Nucl. Inst. and Methods in Phys. Res. B7/8, 453 (1985).Google Scholar
15. Myers, D. R., in Compound Semiconductor Strained-Layer Superlattices. edited by Biefield, R. M. (Trans Tech Publications, Switzerland, 1989) p. 165.Google Scholar
16. Drummond, T. J., Zipperian, T. E., Fritz, I. J., Schirber, J. E., and Plut, T. A., Appl. Phys. Lett. 49 (8), 461 (1986).Google Scholar
17. Daniels, R. R., Ruden, P. P., Shur, M., Grider, D., Nohava, T. E., and Arch, D. K., IEEE Electron Device Letts. EDL–9 (7), 355 (1988).CrossRefGoogle Scholar
18. Kolbas, R. M., Anderson, N. G., Laidig, W. D., Sin, Y., Lo, Y. C., Hsieh, K. Y., and Yang, Y. J., J. Quan. Elec. 24 (8), 1605 (1988).CrossRefGoogle Scholar
19. Vawter, G. A., Myers, D. R., Brennan, T. M., and Hammons, B. E., Appl. Phys. Lett. 56 (20), 1945 1990.Google Scholar
20. Zipperian, T. E., Jones, E. D., Dodson, B. W., Klem, J. F., and Gourley, P. L., Proceedings of 10th GaAs IC Symposium, 251 (1988).Google Scholar
21. Jones, E. D., Zipperian, T. E., Lyo, S. K., Schirber, J. E., and Dawson, L. R., J. Elec. Mater. 19 (6) 533 1990.Google Scholar
22. Sadwick, L. P., Streit, D. C., Jones, W. L., Kim, C. W., Hwu, R. J., IEEE Trans. Electron Devices, 39 (1) 50 1992.Google Scholar
23. Baca, A. G., Zipperian, T. E., Howard, A. J., Klem, J. F., and Tigges, C. P., submitted to Appl. Phys. Lett. (1993).Google Scholar
24. Sherwin, M. E., Baca, A. G., Shul, R. J., Zolper, J. C., Howard, A. J., Draper, B. L., Rieger, D J., Chalmers, S. A., and Tigges, C. P., submitted to Device Research Conference (1993).Google Scholar