Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-30T06:11:37.719Z Has data issue: false hasContentIssue false

Rapid Chemical Vapor Deposition of Yba2cu3ox Coatings

Published online by Cambridge University Press:  28 February 2011

W.J. Lackey
Affiliation:
Georgia Institute of Technology, Atlanta, Georgia 30332
W.B. Carter
Affiliation:
Georgia Institute of Technology, Atlanta, Georgia 30332
D.N. Hill
Affiliation:
Georgia Institute of Technology, Atlanta, Georgia 30332
E.K. Barefield
Affiliation:
Georgia Institute of Technology, Atlanta, Georgia 30332
J.A. Hanigofsky
Affiliation:
Georgia Institute of Technology, Atlanta, Georgia 30332
M.J. Shapiro
Affiliation:
Georgia Institute of Technology, Atlanta, Georgia 30332
T.S. Moss III
Affiliation:
Georgia Institute of Technology, Atlanta, Georgia 30332
A.J. Green
Affiliation:
Georgia Institute of Technology, Atlanta, Georgia 30332
D.F. O'Brien
Affiliation:
Georgia Institute of Technology, Atlanta, Georgia 30332
R.A. Jake
Affiliation:
American Magnetics, Inc., Oak Ridge, Tennessee 37831
K.R. Efferson
Affiliation:
American Magnetics, Inc., Oak Ridge, Tennessee 37831
Get access

Abstract

A rapid, controllable process for CVD of superconducting Yba2Cu30x has been developed. The new process relies on slowly feeding and pneumatically transporting powdered solid reagents directly into the CVD furnace; vaporizers are not used. Deposition rates two orders of magnitude greater than those achievable by reagent sublimation have been obtained using a powder feed mixture of Y, Ba, and Cu tmhd complexes (tmhd is tetramethylheptanedionate). Potentially, the process is applicable to thermally unstable, less volatile, lower cost reagents such as the acetylacetonates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Watanabe, K., Yamane, H., Kurosawa, H., Hirai, T., Kobayashi, N., Iwasaki, H., Noto, K., and Muto, Y., Appl. Phys. Lett. 54 (6), 575577 (1989).Google Scholar
2 Berry, A., Gaskill, D., Holm, R., Cukauskas, E., Kaplan, R., and Henry, R., Appl. Phys. Lett. 52 (20), 17431745 (1988).Google Scholar
3 Nakamori, T., Abe, H., Kanamori, T., and Shibata, S., Jap. J. of Appl. Phys. 27 (7), L12651267 (1988).Google Scholar
4 Zhao, J., Dahmen, K., Marcy, H., Tonge, L., Marks, T., Vessels, B., and Kannewurf, C., Appl. Phys. Lett. 53 (18), 17501752 (1988).Google Scholar
5 Hollabough, C.M., Hahem, L. A., Reiswig, R. D., White, R. W., and Wagner, P., Nucl. Tech. 35 (9) 527535 (1977).Google Scholar
6 Newkirk, L. R. and Valencia, F. A., U.S. Patent No. 4 202 931 (13 May 1980).Google Scholar