Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T01:35:07.827Z Has data issue: false hasContentIssue false

μ-Raman Spectra Analysis of the Evolution of Hydrogen Related Defects and Void Formation in the Silicon Ion-Cut Process

Published online by Cambridge University Press:  01 February 2011

W. Düngen
Affiliation:
University of Hagen, Department of Electrical Engineering and Information Technology, D-58084 Hagen, Germany
R. Job
Affiliation:
University of Hagen, Department of Electrical Engineering and Information Technology, D-58084 Hagen, Germany
Y. Ma
Affiliation:
University of Hagen, Department of Electrical Engineering and Information Technology, D-58084 Hagen, Germany
Y. L. Huang
Affiliation:
University of Hagen, Department of Electrical Engineering and Information Technology, D-58084 Hagen, Germany
W. R. Fahrner
Affiliation:
University of Hagen, Department of Electrical Engineering and Information Technology, D-58084 Hagen, Germany
L. O. Keller
Affiliation:
University of Dortmund, Faculty of Electrical Engineering and Information Technology, D-44227 Dortmund, Germany
J. T. Horstmann
Affiliation:
University of Dortmund, Faculty of Electrical Engineering and Information Technology, D-44227 Dortmund, Germany
Get access

Abstract

Hydrogen implanted, boron doped (100) Czochralski silicon wafers, which were annealed after implantation up to 600 °C, are investigated by μ-Raman spectroscopy (μRS). We have studied the thermal evolution of hydrogen related defects, including vacancy-hydrogen (VnHm) complexes, H-saturated dangling bonds and trapped H2 molecules. Applying temperatures above ∼ 400 °C, the hydrogen related defects and the formation of voids/platelets are distinctly modified. The measured intensity of the local vibration mode (LVM) of H2 molecules trapped in multi-vacancy complexes at a frequency of ∼ 3820 cm-1 decreases while the LVM of H2 in platelets or larger voids (∼ 4150 cm-1) is increasing. This indicates that multi-vacancy complexes coalesce and form larger voids/platelets. Most of the VnHm complexes (∼ 2000 – 2200 cm-1) are dissolved during annealing at 600 °C, where a thin silicon layer exfoliates due to the ion-cut mechanism. However, the Raman modes of the characteristic V2H6 complex, of Si-Hx bonds stemming from H-terminated surfaces and of H2 located in voids/platelets still can be observed after a short time annealing (≤2 min) at 600 °C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bruel, M.. Electron. Lett., 31, 1201, (1995).Google Scholar
2 Lavrov, V., Weber, J., Huang, L., Nielsen, B. Bech, Phys. Rev. B 64, 35204 (2001).Google Scholar
3 Weldon, M. K., Marsico, V. E., Chabal, Y. J., Agarwal, A., Eaglesham, D. J., Sapjeta, J., Brown, W. L., Jacobson, D. C., Caudano, Y., Christman, S. B., Chaban, E. E., J. Vac. Sci. Technol. B 15 10651073 (1997).Google Scholar
4 Chabal, Y. J., Weldon, M. K., Caudano, Y., Stefanov, B. B., Raghavachari, K., Physica B, 273-274, 152163 (1999).Google Scholar
5 Nakanishi, N., Fukata, N., Suezawa, M., phys. stat. sol. (b) 235, 115 (2003).Google Scholar
6 Kitajima, M., Ishioka, K., Nakanoya, K., Tateishi, S., Mori, T., Fukata, N., Murakami, K., Hishita, S., Jpn. J. Appl. Phys., 38, 7A, L691 (1999).Google Scholar
7 Stoicheff, B. P., Can. J. Phys., 35, 739 (1957).Google Scholar
8 Leitch, A. W. R., Weber, J., Alex, V., Mat. Sci. Engineer. B 58, 6 (1999).Google Scholar
9 Murakami, K., Fukatam, N. Sakasi, S., Ishioka, K., Kitajima, M., Fujimura, S., Kikuchi, J., Haneda, H., Phys. Rev. B, 56, 6642 (1997).Google Scholar
10 Mori, T., Otsuka, K., Umehara, N., Ishioka, K., Kitajima, M., Hishita, S., Murakami, K., Physica B, 308-310, 171173 (2001).Google Scholar
11 Akiyama, T., Oshiyama, A., Jpn. J. Appl. Phys. 70, 16271634.Google Scholar
12 Pruneda, J.M., Estreicher, S.K., Junquera, J., Ferrer, J., Ordejón, P, Phys. Rev. B, 65, 075210 (2002).Google Scholar
13 Job, R., Ma, Y., Huang, Y.-L., Ulyashin, A.G., Fahrner, W.R., Beaufort, M.-F., Barbot, J.-F., Diffusion & Defect Data Pt. B: Solid State Phenomena 95-96, 141 (2003).Google Scholar
14 Job, R., Ulyashin, A. G., Fahrner, W. R., Beaufort, M. F., J. F. Barbot, The European Physical Journal - Applied Physics 23, 25 (2003).Google Scholar