Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-15T03:18:29.240Z Has data issue: false hasContentIssue false

Raman Scattering Studies of Si1−xGex Layers Grown by Atmospheric Pressure Chemical Vapor Deposition

Published online by Cambridge University Press:  25 February 2011

C. H. Perry
Affiliation:
Northeastern University, Boston, MA 02115
Feng Lu
Affiliation:
Northeastern University, Boston, MA 02115
F. Namavar
Affiliation:
Spire Corporation, Bedford, MA 01730
N. L. Rowell
Affiliation:
National Research Council, Ottawa, Canada K1A 0R6
Get access

Abstract

Room temperature Raman spectra are reported of Si1−xGex layers on Si substrates (for 0.08≤x≤0.2). The samples were grown using atmospheric pressure chemical vapor deposition techniques. Layer thicknesses varied from 0.1 — 10μm. The relative frequency shift of the Si-Si phonon mode for the SiGe strained epilayers from an incommensurate pseudo-alloy of the same composition is used as a quantitative measure of the lattice strain. For thicknesses below a critical value the Raman data indicate that the films are highly strained and the growth is commensurate with the substrate whereas thicker films are partially or fully relaxed. Phonon lines are sensitive to the interfaces and alloy layers. The results are consistent with other characterization studies, such as TEM and X-ray rocking curve measurements, of the same samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sturm, J.C., Prinz, E.J., Garone, P.M., and Schwartz, P.V., Appl. Phys. Lett. 54, 2707 (1989).Google Scholar
2. Patton, G.L., Comfort, J.H., Meyerson, B.S., Crabbé, E.F., Scilla, G.J, de Frésaut, E., Stork, J.M.C., Sun, J. Y.-C., Harame, D.L., and Burghartz, J.N., Electr. Dev. Lett. 11, 171 (1990).Google Scholar
3. Rowell, N.L., Noël, J.-P., Houghton, D.C., and Buchanan, M., Appl. Phys. Lett. 48, 963 (1991).Google Scholar
4. Bevk, J., Mannaerts, J.P., Feldman, L.C., Davidson, B.A., Lowe, W.P., Glass, A.M., Pearsall, T.P., Menendez, J., Pinczuk, A., and Ourmazd, A., Mat. Res. Soc. 67, 189 (1986).Google Scholar
5. Houghton, D.C., Lockwood, D.J., Dharma-Wardana, M.W.C., Fenton, E.W., Baribeau, J.-M., and Denhoff, M.W., J. Cryst. Growth 81, 434 (1987).Google Scholar
6. Hull, R., Bean, J.C., Leibenguth, R.E., and Werder, D.J., J. Appl. Phys. 65, 4723 (1989).Google Scholar
7. Paine, D.C., Howard, D.J., Stoffel, N.G., and Horton, J.A., J. Mat. Res. 5, 1023 (1990).Google Scholar
8. Lockwood, D.J., Baribeau, J.-M., and Timbrell, P.Y., J. Appl. Phys. 65, 3049 (1989).Google Scholar
9. Houghton, D.C., Perovic, D.D., Baribeau, J.-M., and Weatherly, G.C., J. Appl. Phys. 67, 1850 (1990).Google Scholar
10. Namavar, F., Cortesi, E., Manke, J.M., Kalkhoran, N.M., Johnson, E.A., DeSil-vestre, O.A., Blythe, M.C., Johnson, M.H., and Perry, D.L., Proc. 2nd Int. Conf. on Electr. Mat. (ICEM'90), 403 (1990).Google Scholar
11. Namavar, F., Kvam, E.P., Perry, D.L., Cortesi, E., Kalkhoran, N.M., and Manke, J.M., Mat. Res. Soc. Extended Abst. (EA–21), 249 (1990).Google Scholar
12. Namavar, F., Manke, J.M., Kvam, E.P., Sanfacon, M.M., Perry, C.H., and Kalkhoran, N.M., Mat. Res. Soc. 220, 285 (1991).Google Scholar
13. Rowell, N.L., Noël, J.-P., Wang, A., Namavar, F., Perry, C.H., and Soref, R.A., J. Appl. Phys. 71, 6201 (1992).Google Scholar
14. Bevk, J., Ourmazd, A., Feldman, L.C., Pearsall, T.P., Bonar, J.M., Davidson, B.A., and Mannaerts, J.P., Appl. Phys. Lett. 50, 760 (1987).Google Scholar
15. Abstreiter, G., Eberl, K., Friess, E., Wegsheider, W., and Zachai, R., J. Cryst. Growth 95, 431 (1989).Google Scholar
16. Renucci, M.A., Renucci, J.B., and Cardona, M., Light Scattering in Solids, (Ed. M. Balkanski, Flammarion, Paris, 1971) pp. 326329.Google Scholar
17. Brya, W.J., Solid State Comm. 12, 253 (1973).Google Scholar
18. Cerdeira, F., Pinczuk, A., Bean, J.C., Batlogg, B., and Wilson, B.A., Appl. Phys. Lett. 45, 1138 (1984).Google Scholar
19. Kvam, E.P. and Namavar, F., Appl. Phys. Lett. 58, 2357 (1991).Google Scholar
20. Lockwood, D.J., Rajan, K., Fenton, E. W., Baribeau, J.-M., and Denhoff, M.W., Solid State Comm. 61, 465 (1987).Google Scholar
21. Ourmazd, A., and Bean, J.C., Phys. Rev. Lett. 55, 765 (1985).Google Scholar