Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T10:30:01.386Z Has data issue: false hasContentIssue false

Raman Scattering Spectroscopy of GeSi/Si Strained Layer Superlattice

Published online by Cambridge University Press:  25 February 2011

Zhang Rong
Affiliation:
Department of Physics, Nanjing University, Nanjing 210008, CHINA Fax: 86-25-302728
Zheng Youdou
Affiliation:
Department of Physics, Nanjing University, Nanjing 210008, CHINA Fax: 86-25-302728
Gu Shulin
Affiliation:
Department of Physics, Nanjing University, Nanjing 210008, CHINA Fax: 86-25-302728
Hu Liqun
Affiliation:
Department of Physics, Nanjing University, Nanjing 210008, CHINA Fax: 86-25-302728
Get access

Abstract

Raman scattering measurements have been carried out on Si1-xGex/Si SLS. It is found that the Ge–Ge optic phonon frequency shift is proportional to strain in the SiGe film, and the Ge–Ge strain shift coefficient is 408cm−1. Based on these study a new method for analyzing the Raman spectra of SiGe/Si SLS has been proposed. Using the new method we can obtain the composition of the alloy sublayers as well as the strain in SLS. The strain distribution in the SiGe/Si SLS has been discussed, and strain in both SiGe and Si sublayers of the SLS have been calculated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fiory, A.T., Bean, J.C., Feldman, L.C. and Robinson, I.K., J.Appl.Phys., 56, 1227(1984)CrossRefGoogle Scholar
2. Jain, S.C. and Hayes, W., Semicon.Sci.Technol., 6, 547(1991)CrossRefGoogle Scholar
3. Jang, S.M., Kim, H.W. and Reif, R., Appl.Phys.Lett., 61, 315(1992)Google Scholar
4. Freiman, W. and Beserman, R., Dettmer, K. and Kessler, F.R., Appl.Phys Lett., 60, 1673(1992)Google Scholar
5. Hull, R., Bean, J.C., Peticolas, L.J., Bahnck, D., Weir, B.E. and Feldman, L.C., Appl.Phys.Lett., 61, 2802(1992)Google Scholar
6. Duan, X.F., Appl.Phys.Lett., 61, 324(1992)CrossRefGoogle Scholar
7. Qin, L., Zheng, Y., Zhang, R. and Feng, D., Superlattices and Microstructures, 12, 517(1992)Google Scholar
8. Halliwell, M.A.G., Lyons, M.H., Davey, S.T., Hockly, M., Tuppen, C.G. and Gibbings, C.J., Semicond. Sci. Technol. 4, 10(1989)Google Scholar
9. Meyer, F., Zafrany, M., Eizenberg, M., Beserman, R., Schwebel, C. and Pellet, C., J. Appl. Phys., 70, 4268(1991)Google Scholar
10. Sapriel, J. and Rouhani, B.D., Surf.Sci.Reps., 10, 189(1989)Google Scholar
11. Cerdeira, F., Pinczuk, A., Bean, J.C., Batlogg, B. and Wilson, B. A., Appl. Phys. Lett., 45, 1138(1984)CrossRefGoogle Scholar
12. Sui, Z., Herman, I.P. and Bevk, J., Appl.Phys.Lett., 58, 2352(1991)Google Scholar
13. Lockwood, D.J. and Baribeau, J.M., Phys.Rev., B45, 8565(1992)CrossRefGoogle Scholar
14. Xu, J., Wang, J., Sheng, C., Sun, H., Zheng, S. and Yao, W., Chinese J.Semicond, 11, 822(1990) (in Chinese)Google Scholar
15. Zheng, Y., Zhang, R., Hu, L., Gu, S., Wang, R., Han, P. and Jiang, R., in Mechanisms of Heteroepitaxial Growth, edited by Chisholm, M.F., Hull, R., Schowalter, L.J. and Garrison, B.J.(Mater. Res. Soc. Proc. 263, Pittsburgh, PA, 1992), pp227232 Google Scholar
16. Zhang, R., Zheng, Y., Jiang, R., Hu, L., Zhong, P., Yu, S., Li, Q., Feng, D. Appl. Surf. Sci., 48/49, 356(1991)CrossRefGoogle Scholar
17. Gu, S., Wang, R., Han, P., Hu, L., Zhang, R. and Zheng, Y., Superlattices and Microstructures, 12, 4, 513(1992)CrossRefGoogle Scholar
18. Anastassakis, E., Pinczuk, A., Burstein, E., Pollack, F.H. and Cardona, M., Solid State Commun., 8, 133(1970)Google Scholar
19. Houghton, D.C., J. Cryst. Growth, 81, 434(1987)Google Scholar