Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T16:09:12.268Z Has data issue: false hasContentIssue false

Raman Characterization of Protocrystalline Silicon Films

Published online by Cambridge University Press:  31 January 2011

A. J. Syllaios
Affiliation:
aj.syllaios@L-3com.com, L-3 Communications Infrared Products, Dallas, Texas, United States
S. K. Ajmera
Affiliation:
Sameer.Ajmera@L-3com.com, L-3 Communications Infrared Products, Dallas, Texas, United States
G. S. Tyber
Affiliation:
Gregory.Tyber@L-3com.com, L-3 Communications Infrared Products, Dallas, Texas, United States
C. L. Littler
Affiliation:
Christopher.Littler@unt.edu, University of North Texas, Department of Physics, Denton, Texas, United States
R. E. Hollingworth
Affiliation:
RHollingsworth@itnes.com, ITN Energy Systems, Littleton, Colorado, United States
Get access

Abstract

An increasingly important application of thin film hydrogenated amorphous silicon (α-Si:H) is in infrared detection for microbolometer thermal imaging arrays. Such arrays consist of thin α-Si:H films that are integrated into a floating thermally isolated membrane structure. Among the α-Si:H material properties affecting the design and performance of microbolometers is the microstructure. In this work, Raman spectroscopy is used to study changes in the microstructure of protocrystalline p-type α-Si:H films grown by PECVD as substrate temperature, dopant concentration, and hydrogen dilution are varied. The films exhibit the four Raman spectral peaks corresponding to the TO, LO, LA, and TA modes. It is found that the TO Raman peak becomes increasingly well defined (decreasing line width and increasing intensity), and shifts towards the crystalline TO energy as substrate temperature is increased, H dilution of the reactants is increased, or as dopant concentration is decreased.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Street, R. A. (ed.), Technology and Applications of Amorphous Silicon, Springer, 2000.Google Scholar
2 Brady, J. Schimert, T. Ratcliff, D. Gooch, R. Ritchey, B. McCardel, W. L. Rachels, K. Ropson, S. Wand, M. Weinstein, M. and Wynn, J. Proc. SPIE Vol. 3698, 161(1999).Google Scholar
3 Tissot, J. L. Rothan, F. Vedel, C. Vilain, M. and Yon, J. J. Proc. SPIE Vol. 3436, 605(1998).Google Scholar
4 Kosarev, A. Moreno, M. Torres, A. and Zuniga, C. J. Non-Cryst. Solids 358 (2008) 2561.Google Scholar
5 Tanaka, K. Maruyama, E. Shimada, T. and Okamoto, H. Amorphous Silicon, John Wiley & Sons, 1993.Google Scholar
6 Collins, R. W. Ferlauto, A. S. Ferreira, G. M. Koh, J. Chen, C. Koval, R. J. Pearce, J.M. Wronski, C. R. Al-Jassim, M. M., and Jones, K. M. Mat. Res. Soc. Symp. Proc. Vol. 762, A10.1.1 (2003).Google Scholar
7 Viera, G. Huet, S. and Boufendi, L. J. Appl. Phys. 90, 4175(2001).Google Scholar
8 Wu, K. Yan, X. Q. and Chen, M. W. Appl. Phys. Lett. 91, 101903(2007).Google Scholar
9 Roura, P. Farjas, J. and Cabarrocas, P. Rocai, J. Appl. Phys. 104, 073521(2008).Google Scholar