Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T12:47:28.650Z Has data issue: false hasContentIssue false

Radiation Damage Effects in Ferroelectric Litao3 Single Crystals

Published online by Cambridge University Press:  10 February 2011

C. J. Wetteland
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology, Los Alamos, NM 87545.
K. E. Sickafus
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology, Los Alamos, NM 87545.
V. Gopalan
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology, Los Alamos, NM 87545.
J. N. Mitchell
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology, Los Alamos, NM 87545.
T. Hartmann
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology, Los Alamos, NM 87545.
M. Nastasi
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology, Los Alamos, NM 87545.
C. J. Maggiore
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology, Los Alamos, NM 87545.
J. R. Tesmer
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology, Los Alamos, NM 87545.
T. E. Mitchell
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology, Los Alamos, NM 87545.
Get access

Abstract

Z-cut lithium tantalate (LiTaO3) ferroelectric single crystals were irradiated with 200 keV Art++ ions. LiTaO3 possesses a structure that is a derivative of the corundum (A12O3) crystal structure. A systematic study of the radiation damage accumulation rate as a function of ion dose was performed using ion-beam channeling experiments. An ion fluence of 2.5•1018 Ar2+ ions/m2 was sufficient to amorphize the irradiated volume of a LiTaO3 crystal at an irradiation temperature of ∼120K. This represents a rather exceptional susceptibility to ion-induced amorphization, which may be related to a highly disparate rate of knock-on of constituent lattice ions, due to the large mass difference between the Li and Ta cations. We also observed that the c end of the ferroelectric polarization exhibits slightly higher ion dechanneling along with an apparent greater susceptibility to radiation damage, as compared to the c+ end of the polarization.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Miller, R. C. and Nordland, W. A., Phys. Rev. B 2, p.4896 (1970).Google Scholar
[2] Onuki, K., Uchida, N. and Saku, T., J. Opt. Soc. Am. 62, p. 1030 (1972).Google Scholar
[3] Gopalan, V. and Gupta, M. C., J. Appl. Phys. 80, pp. 60996106 (1996).Google Scholar
[4] Mitchell, J. N., Devanathan, R., Yu, N., Sickafus, K. E., Wetteland, C., Gopalan, J., V., Nastasi, M. and McClellan, K. J., Nucl. Instr. and Meth. B, submitted for publication (1997).Google Scholar
[5] Mitchell, J. N., Yu, N., Devanathan, R., Sickafus, K. E., Nastasi, M. and Nord, G. L. Jr, Nucl. Instr. and Meth. B 127/128, pp. 629633 (1997).Google Scholar
[6] Devanathan, R., Sickafus, K. E., Weber, W. J., Mitchell, J. N. and Nastasi, M., Mater. Sci. & Eng. A, submitted for publication (1997).Google Scholar
[7] Mitchell, J. N., Yu, N., Sickafus, K. E., Nastasi, M., Taylor, T. N., McClellan, K. J. and Nord, G. L. Jr, Mater. Res. Soc. Symp. Proc. 396, pp. 173178 (1996).Google Scholar
[8] Ziegler, J. F., Biersack, J. P. and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
[9] Gopalan, V. and Gupta, M. C., Appl. Phys. Lett. 68, pp. 888890 (1996).Google Scholar