Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-02T12:42:44.806Z Has data issue: false hasContentIssue false

Quantum Hall Effect and Rapid Oscillations in (Tmtsf)2Pf6 under Pressure

Published online by Cambridge University Press:  25 February 2011

S. T. Hannahs
Affiliation:
Department of Physics, Boston University, Boston MA 02215
J. S. Brooks
Affiliation:
Department of Physics, Boston University, Boston MA 02215
W. Kang
Affiliation:
Department of Physics, Princeton University, Princeton NJ 08544
P. M. Chaikin
Affiliation:
Department of Physics, Princeton University, Princeton NJ 08544 Exxon Research And Engineering Co. Rt. 22E, Annandale, NJ 08801
L. Y. Chiang
Affiliation:
Exxon Research And Engineering Co. Rt. 22E, Annandale, NJ 08801
R. Upasani
Affiliation:
Department of Physics, Princeton University, Princeton NJ 08544 Exxon Research And Engineering Co. Rt. 22E, Annandale, NJ 08801
Get access

Abstract

We present magnetotransport data and the phase diagram derived from them for (TMTSF)2PF6 under sufficient pressure that the zero field Spin Density Wave (SDW) is suppressed and the material is superconducting. Application of a large magnetic field perpendicular to the conducting plane then leads to the cascade of Field Induced Spin Density Wave (FISDW) transitions. The transitions are in good agreement with the Standard model for these transitions and in contrast to the more complicated behavior seen in the ClO4 salt. In addition Hall and longitudinal resistivity indicates a behavior much closer to that observed in conventional Quantum Hall devices than in the ClO4 salt or previous studies of PF6. We do observe the “rapid” Schubnikov de Haas like oscillations in magnetoresistance at high field similar to those seen in ClO4, even though in the present case there is no evidence for anion ordering as some theories would require.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. von Klitzing, K., Dorde, G. and Pepper, M., Phys. Rev. Lett. 45, 494, (80);Google Scholar
Tsui, D. C., Stormer, H. L. and Gossard, A. C., Phys. Rev. B 25, 1408 (82).Google Scholar
2. Stormer, H. L., et al., Phys. Rev. Lett. 56, 85 (86).Google Scholar
3. Jerome, D., and Schultz, H. J., Adv. in Phys. 31, 299 (82).Google Scholar
4. Poilblanc, D., et al., Phys. Rev. Lett. 58, 270 (87).Google Scholar
5. Ribault, M., et al., J. Phys. Lett. 44, L-953 (83);Google Scholar
Chaikin, P. M. et al., Phys. Rev. Lett. 51, 2333 (83).Google Scholar
6. Chamberlin, R. V. et al., Phys. Rev. Lett. 60, 1189 (88).Google Scholar
7. Hannahs, S. T. et al., Phys. Rev. Lett. 63, 1988 (89);CrossRefGoogle Scholar
Hannahs, S. T. et al., Bull. Am. Phys. Soc. 34, 740 (89);Google Scholar
Cooper, J. R. et al., Phys. Rev. Lett. 63, 1984 (89).Google Scholar
8. Ribault, M., Mol. Cryst. Liq. Cryst. 119, 91 (85).Google Scholar
9. Naughton, M. J. et al., Phys. Rev. Lett. 61, 621 (88).Google Scholar
10. Kwak, J. F., Schirber, J. E., Greene, R. L., and Engler, E. M., Phys. Rev. Lett. 46, 1296 (81) and Mol. Cryst. Liq. Cryst. 79, 121 (81).Google Scholar
11. Kwak, J. F. et al., Phys. Rev. Lett. 56, 972 (86);Google Scholar
Ribault, M., et al., Physica 143b, 393 (86);Google Scholar
Brossard, L., et al., Physica 143b, 406 (86).Google Scholar
12. Montambaux, G. et al., Phys. Rev. B 39, 885 (89).Google Scholar
13. Schwenk, H. et al., Phys. Rev. Lett. 56, 667 (86),Google Scholar
Osada, T., Miura, N., and Saito, G., Solid State Commun. 60, 441 (86);Google Scholar
Physica 143B, 403 (86),Google Scholar
Ulmet, J. P. et al., Physica 143b, 400 (86),Google Scholar
Yan, X. et al., Phys. Rev. B 36, 1799 (87).Google Scholar
14. Yamaji, K., Physica 143B+C, 439 (86);Google Scholar
J. Phys. Soc. Jpn. 55, 1424 (86),Google Scholar
Azbel, M. Ya., Chaikin, P. M., Phys. Rev. Lett. 59, 582 (87),Google Scholar
Osada, T. and Muira, N., Solid State Commun. 69, 1169 (89).Google Scholar
15. Yakovenko, V. M., Z.E.T.F. 93, 627 (87) [Soviet Physics JETP 66, 355 (87)].Google Scholar